Geometry and Topology Graduate Exam Fall 2009

Problem 1. Let $f: M \rightarrow N$ be a map between two compact oriented manifolds of the same dimension. Suppose that the subgroup $f^{*}\left(\pi_{1}(M)\right)$ has finite index in $\pi_{1}(N)$.
a. Show that the index $\left[\pi_{1}(N): f^{*}\left(\pi_{1}(M)\right)\right]$ divides the degree of f.
b. Give an example where $\left[\pi_{1}(N): f^{*}\left(\pi_{1}(M)\right)\right]$ is different from the degree of f.
Problem 2. Is there a differentiable map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that sends the vector field $\frac{\partial}{\partial x}$ to the vector field $X=x \frac{\partial}{\partial x}+\frac{\partial}{\partial y}$ and sends the vector field $\frac{\partial}{\partial y}$ to the vector field $Y=-\frac{\partial}{\partial x}+x \frac{\partial}{\partial y}$?
Problem 3. Let $f: S^{n} \rightarrow S^{n}$ be a degree 5 map from the sphere S^{n} to itself.
a. Show that there exists $x_{1} \in S^{n}$ such that $f\left(x_{1}\right)=-x_{1}$.
b. Show that there exists $x_{2} \in S^{n}$ such that $f\left(x_{2}\right)=x_{2}$.

Problem 4. Let M be a compact submanifold of \mathbb{R}^{n}, of dimension at most $n-3$, and let $f: B^{2} \rightarrow \mathbb{R}^{n}$ be a differentiable map from the 2-dimensional ball (or disk) B^{2} to \mathbb{R}^{n}. Let $T_{v}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ denote the translation along the vector $v \in \mathbb{R}^{n}$.
a. Show that there exists arbitrarily small vectors $v \in \mathbb{R}^{n}$ such that the image of $T_{v} \circ f$ is disjoint from M.
b. Conclude that the complement $\mathbb{R}^{n}-M$ is simply connected.

Problem 5. Let ω be a closed form of degree n on $\mathbb{R}^{n+1}-\{0\}$. Show that, for any two differentiable maps $f, g: S^{n} \rightarrow \mathbb{R}^{n+1}-\{0\}$, the ratio

$$
\frac{\int_{S^{n}} f^{*}(\omega)}{\int_{S^{n}} g^{*}(\omega)}
$$

is a rational number when the denominator is not 0 .
Problem 6. Let S be the standard surface of genus 2 in \mathbb{R}^{3} as in the picture below, and let W be the closure of the bounded component of $\mathbb{R}^{3}-\boldsymbol{S}$. Compute the relative homology groups $H_{n}(W, \boldsymbol{S})$.

Problem 7. Let M be a compact connected submanifold of an oriented manifold N, with $\operatorname{dim} M=\operatorname{dim} N-1$. Show that M is orientable if and only if it admits arbitrarily small connected neighborhoods U such that $U-M$ is disconnected. Namely, if and only if, for every open subset $V \subset N$ containing M, there is a connected open subset $U \subset V$ such that $U-M$ is not connected.

