ALGEBRA QUALIFYING EXAM FALL 2010

Do all six problems. Each problem is worth 4 points and partial credit may be awarded.

1. Use Sylow's Theorems to show that any group of order $\left(99^{2}-4\right)^{3}$ is solvable.
2. For any finite group G and positive integer m, let $n_{G}(m)$ be the number of elements g of G that satisfy $g^{m}=e_{G}$. If A and B are finite abelian groups so that $n_{A}(m)=n_{B}(m)$ for all m, show that as groups $A \cong B$.
3. If $g(x)=x^{5}+2 \in \boldsymbol{Q}[x]$, for \boldsymbol{Q} the field of rational numbers, compute the Galois group of a splitting field L over \boldsymbol{Q} of $g(x)$. How many subfields of L containing \boldsymbol{Q} are Galois over \boldsymbol{Q} ?
4. Let P be a minimal prime ideal in the commutative ring R with 1 ; that is, if Q is a prime ideal in R and if $Q \subseteq P$, then $Q=P$. Show that each $x \in P$ is a zero divisor in R.
5. Set $R=\boldsymbol{C}\left[x_{1}, \ldots, x_{n}\right]$ with $n \geq 3$ and \boldsymbol{C} the field of complex numbers. For any subset $S \subseteq R$, let $\vartheta(S)=\left\{\alpha \in \boldsymbol{C}^{n} \mid g(\alpha)=0\right.$ for all $\left.g \in S\right\}$. Consider the ideal I of R defined by $I=\left(x_{1} \cdots x_{n-1}-x_{n}, x_{1} \cdots x_{n-2} x_{n}-x_{n-2}, \ldots, x_{2} \cdots x_{n}-x_{1}\right)$, so the generators of I are obtained by subtracting each x_{j} from the product of the others. Show that there are fixed positive integers s and t so that for each $0 \leq i \leq n,\left(x_{i}^{s}-x_{i}\right)^{t} \in I$. (Hint: Consider the product of the generators of I.)
6. Let R be a right artinian algebra over an algebraically closed field F. Show that R is algebraic over F of bounded degree. That is, show there is a fixed positive integer m so that for any $r \in R$ there is a nonzero $g_{r}(x) \in F[x]$ with $g_{r}(r)=0$ and with $\operatorname{deg} g \leq m$.
