ALGEBRA QUALIFYING EXAM FALL 2010

Do all six problems. Each problem is worth 4 points and partial credit may be awarded.

- 1. Use Sylow's Theorems to show that any group of order $(99^2 4)^3$ is solvable.
- 2. For any finite group *G* and positive integer *m*, let $n_G(m)$ be the number of elements *g* of *G* that satisfy $g^m = e_G$. If *A* and *B* are finite abelian groups so that $n_A(m) = n_B(m)$ for all *m*, show that as groups $A \cong B$.
- 3. If $g(x) = x^5 + 2 \in \mathbf{Q}[x]$, for \mathbf{Q} the field of rational numbers, compute the Galois group of a splitting field *L* over \mathbf{Q} of g(x). How many subfields of *L* containing \mathbf{Q} are Galois over \mathbf{Q} ?
- 4. Let *P* be a minimal prime ideal in the commutative ring *R* with 1; that is, if *Q* is a prime ideal in *R* and if $Q \subseteq P$, then Q = P. Show that each $x \in P$ is a zero divisor in *R*.
- 5. Set $R = C[x_1, ..., x_n]$ with $n \ge 3$ and C the field of complex numbers. For any subset $S \subseteq R$, let $\mathcal{V}(S) = \{\alpha \in C^n \mid g(\alpha) = 0 \text{ for all } g \in S\}$. Consider the ideal I of R defined by $I = (x_1 \cdots x_{n-1} x_n, x_1 \cdots x_{n-2}x_n x_{n-2}, \dots, x_2 \cdots x_n x_1)$, so the generators of I are obtained by subtracting each x_j from the product of the others. Show that there are fixed positive integers s and t so that for each $0 \le i \le n$, $(x_i^s x_i)^t \in I$. (Hint: Consider the product of the generators of I.)
- 6. Let *R* be a right artinian algebra over an algebraically closed field *F*. Show that *R* is algebraic over *F* of bounded degree. That is, show there is a fixed positive integer *m* so that for any $r \in R$ there is a nonzero $g_r(x) \in F[x]$ with $g_r(r) = 0$ and with deg $g \le m$.