ALGEBRA QUALIFYING EXAM, Fall 2009

Notation: \mathbb{Q} denotes the rational numbers, \mathbb{R} the real numbers, \mathbb{C} the complex numbers, and \mathbb{F}_{p} the field with p elements, for p a prime.

1. Determine up to isomorphism all groups of order $1005=3 \cdot 5 \cdot 67$.
2. (a) Let G be a group of order $2^{m} k$, where k is odd. Prove that if G contains an element of order 2^{m}, then the set of all elements of odd order in G is a (normal) subgroup of G.
(Hint: consider the action of G on itself by left multiplication Φ_{L}, and then consider the structure of the permutations $\Phi_{L}(x)$, for $x \in G$.)
(b) Conclude from (a) that a finite simple group of even order must have order divisible by 4 .
3. Give a brief argument or a counterexample for each statement:
(a) $x^{2^{n}}+1 \in \mathbb{Q}[x]$ is irreducible for all positive integers n;
(b) Any splitting field for $x^{13}-1 \in \mathbb{F}_{3}[x]$ has 3^{12} elements. (c) $\mathcal{G} a l(L / \mathbb{Q})$ for L a splitting field over \mathbb{Q} of $x^{5}-2 \in \mathbb{Q}[x]$ has a normal 5 -Sylow subgroup.
4. Let A denote the commutative ring $\mathbb{R}\left[x_{1}, x_{2}, x_{3}\right] /\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+1\right)$.
(a) Prove that A is a Noetherian domain.
(b) Give an infinite family of prime ideals of A that are not maximal.
5. Let $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, let $A=\left[a_{i j}\right] \in M_{n}(\mathbb{C})$, and choose $b_{1}, \ldots, b_{n} \in \mathbb{C}$. For each $i=1, \ldots, n$, set $L_{i}=a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots a_{i n} x_{n}-b_{i} \in R$, and consider the ideal $I=\left(L_{1}, \ldots, L_{n}\right) \subseteq R$.
Prove that R / I is finite-dimensional \Longleftrightarrow the matrix A is invertible in $M_{n}(\mathbb{C})$.
6. Let $R=K[x]$, for K a field, and let M be a finitely-generated torsion module over R. Prove that M is a finite-dimensional K-module.
7. Let G be a finite group and K a field, and consider the group algebra $R=K G$ (that is, R is a K-vector space with basis $\{g \in G\}$, and multiplication determined by the group product $g \cdot H$, for $g, h \in G$).
If G is the dihedral group of order 8 , find the dimensions of all of the simple (left) modules for $R=\mathbb{F}_{5} G$.
(Hint: remember that $K G$ always has the "trivial representation" $V_{0}=K v$, such that for any $g \in G, a \in K, a g \cdot v=a v$.)
