ALGEBRA EXAM FEBRUARY 2011

- 1. Let G be a finite group with a cyclic Sylow 2-subgroup S.
 - (a) Show that any element of odd order in $N_G(S)$ centralizes S.
 - (b) Show that $N_G(S) = C_G(S)$.
 - (c) Give an example to show that (a) can fail if S is abelian.
- 2. Let G be a finite group with a cyclic Sylow 2-subgroup $S \neq 1$.
 - (a) Let $\rho: G \to S_n$ be the regular representation with n = |G|. Show that $\rho(G)$ is not contained in A_n .
 - (b) Show that G has a normal subgroup of index 2.
 - (c) Show that the set of elements of odd order in G form a normal subgroup N and G = NS.
- 3. For a group G and p a prime let $G(p) = \{g \in G | g^p = 1\}.$
 - (a) Show that if G is Abelian, then G(p) is a subgroup of G. Give an example to show that G(p) need not be a subgroup in general.
 - (b) Let G, H be finitely generated Abelian groups with $G/G(p) \cong H/H(p)$ and $G/G(q) \cong H/H(q)$ for different primes p, q. Show that $G \cong H$.
- 4. Let R be a prime ring with only finitely many right ideals.
 - (a) Show that R is a simple ring.
 - (b) Prove that either R is finite or R is a division ring.

5. Let $R = \mathbb{C}[x_1, \ldots, x_n]$ and let J be a nonzero proper ideal of R. Let $A = A(X), B = B(X) \in M_r(R)$ and assume that $\det(A)$ is a product of distinct monic irreducible polynomials in R. Assume that for each $\alpha = (a_1, \ldots, a_n) \in \mathbb{C}_n, B(\alpha) \in M_r(\mathbb{C})$ invertible implies that $A(\alpha)$ is invertible. Show that $\det(A)$ divides $\det(B)$ in R.

6. Let L be a splitting field over \mathbb{Q} for $p(x) = x^{10} + 3x^5 + 1$. Let $G = \operatorname{Gal}(L/\mathbb{Q})$.

- (a) Show that G has a normal subgroup of index 2.
- (b) Show that 4 divides |G|.
- (c) Show that G is solvable.