1. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. Poisson random variables with parameter $\lambda>0$, and let $\eta_{n}=\prod_{k=1}^{n} X_{k}$.
(i) Show that $\left\{\eta_{n}\right\}_{n=1}^{\infty}$ converges to zero in probability.
(ii) Is it possible to find a subsequence $\left\{\eta_{n_{k}}\right\}_{k=1}^{\infty}$ and a non-zero random variable η with finite moment such that $\lim _{k \rightarrow \infty} \mathbf{E}\left|\eta_{n_{k}}-\eta\right|=0$?
2. Assume that X_{1}, X_{2}, \ldots are independent random variables. Show that $\sup _{n \geq 1} X_{n}<\infty$ a.s. if and only if

$$
\sum_{n=1}^{\infty} \mathbf{P}\left(X_{n}>A\right)<\infty \text { for some constant } A
$$

3. Let $X_{1} X_{2}, \ldots$ be i.i.d. with $\mathbf{E} X_{i}=0$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}>0$, and let $S_{n}=X_{1}+\ldots+X_{n}$. Let N_{n} be a sequence of integer valued random variables independent of $X_{i}, i \geq 1$, and let a_{n} be a sequence of positive integers with $N_{n} / a_{n} \rightarrow 1$ in probability and $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

What is the limit distribution of $\frac{S_{N_{n}}}{\sigma \sqrt{a_{n}}}$ as $n \rightarrow \infty$?

