Screening Exam

Fall, 2009

Last Name: _____ First Name:__

1. Let X_1, X_2, \ldots be i.i.d. random variables uniformly distributed on (0, 1). Prove that

$$\mathbf{P}\{\limsup_{n\to\infty}\left(\frac{-\log X_n}{\log n}\right) = 1\} = 1.$$

2. Assume X_1, X_2, \ldots are independent with

$$\mathbf{P}(X_n = n^{-\alpha}) = \mathbf{P}(X_n = -n^{-\alpha}) = \frac{1}{2}.$$

For what α does the series $\sum_{n} X_n$ converge a.s.? For what α does the series $\sum_{n} |X_n|$ converge a.s.?

3. Let $U_1, U_2, ..., be an i.i.d.$ sequence of uniform random variables on [0, 1]. Define a sequence of random variables $\{V_n\}$ recursively as follows:

$$V_1 = U_1, \qquad V_n = \begin{cases} 2V_{n-1}U_n & \text{if } V_{n-1} \in [0, \frac{1}{2}], \\ (2V_{n-1} - 1)U_n & \text{if } V_{n-1} \in [\frac{1}{2}, 1]. \end{cases}$$

(i) Show that, V_{n-1} and U_n are independent, for all $n \ge 2$;

(ii) $\mathbf{E}[V_n|V_{n-1}] = V_{n-1} - \frac{1}{2} \mathbf{1}_{\{1/2 \le V_{n-1} \le 1\}}$, where $\mathbf{1}_{\{1/2 \le V_{n-1} \le 1\}}$ is the indicator function of the set $\{1/2 \le V_{n-1} \le 1\}$;

(iii) Show that $\mathbf{P}(V_{n-1} < 1/2) \to a$, for some $a \in [0, 1]$, as $n \to \infty$. Determine the number a.