Last Name: First Name:

1. Let X_{1}, X_{2}, \ldots be i.i.d. random variables uniformly distributed on $(0,1)$. Prove that

$$
\mathbf{P}\left\{\limsup \sup _{n \rightarrow \infty}\left(\frac{-\log X_{n}}{\log n}\right)=1\right\}=1 .
$$

2. Assume X_{1}, X_{2}, \ldots are independent with

$$
\mathbf{P}\left(X_{n}=n^{-\alpha}\right)=\mathbf{P}\left(X_{n}=-n^{-\alpha}\right)=\frac{1}{2}
$$

For what α does the series $\sum_{n} X_{n}$ converge a.s.? For what α does the series $\sum_{n}\left|X_{n}\right|$ converge a.s.?
3. Let U_{1}, U_{2}, \ldots, be an i.i.d. sequence of uniform random variables on $[0,1]$. Define a sequence of random variables $\left\{V_{n}\right\}$ recursively as follows:

$$
V_{1}=U_{1}, \quad V_{n}= \begin{cases}2 V_{n-1} U_{n} & \text { if } V_{n-1} \in\left[0, \frac{1}{2}\right] \\ \left(2 V_{n-1}-1\right) U_{n} & \text { if } V_{n-1} \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

(i) Show that, V_{n-1} and U_{n} are independent, for all $n \geq 2$;
(ii) $\mathbf{E}\left[V_{n} \mid V_{n-1}\right]=V_{n-1}-\frac{1}{2} \mathbf{1}_{\left\{1 / 2 \leq V_{n-1} \leq 1\right\}}$, where $\mathbf{1}_{\left\{1 / 2 \leq V_{n-1} \leq 1\right\}}$ is the indicator function of the set $\left\{1 / 2 \leq V_{n-1} \leq 1\right\}$;
(iii) Show that $\mathbf{P}\left(V_{n-1}<1 / 2\right) \rightarrow a$, for some $a \in[0,1]$, as $n \rightarrow \infty$. Determine the number a.

