1. A drawer contains N pairs of socks; each sock has precisely one mate. The $2 N$ socks are randomly arranged in the drawer. I choose k socks (randomly) from among the $2 N$ socks in the drawer, with $2 \leq k \leq 2 N$. What is the expected number of complete pairs in my sample of k socks?
2. A clerk in a gas station is rolling a fair dice while waiting for the customers to come. Suppose that the number of times the dice is rolled between two customers has a Poisson distribution with parameter $\lambda=5$. Let ξ be the total points (of the dice) the clerk observed right before the next customer comes in. Determine $E \xi$ and $D \xi$ (standard deviation).
3. Let a random variable X be normal $N\left(\mu, \sigma^{2}\right)$ and let the conditional distribution of Y given X be normal $N\left(a_{1}+a_{2} X, \sigma_{1}^{2}\right)$.
(a) Find the joint probability density function of X and Y.
(b) Find the marginal distribution of Y and the correlation coefficient of X and Y.
4. Let ξ and η be two random variables, both taking only two values. Show that if they are uncorrelated, then they are independent.
