# Numerical Analysis Screening Exam, Spring 2010 

## First Name:

## Last Name:

## I. Linear Equations

Consider the singular system

$$
B u=\left(\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right) u=f .
$$

(a) Find the range $\mathcal{R}(\mathcal{B})$ and null space $\mathcal{N}(\mathcal{B})$ of $B$.
(b) State the solvability condition for $B u=f$.
(c) Find an example of $f$ for which $B u=f$ has no solutions.
(d) Find an example of $f$ for which $B u=f$ has infinitely many solutions, and find the explicit form of this solution (depending on a parameter c).

## II. Least Squares Problem

Consider the matrix $A$ and vector $b$ given below

$$
A=\left(\begin{array}{rrr}
2 & -1 & 1 \\
-2 & 0 & -2 \\
1 & 5 & 6
\end{array}\right), b=\left(\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right) .
$$

(a) Using the Householder transformation matrix method to find a $Q R$ decomposition of the matrix $A$ and a solution to the problem

$$
\min \|A x-b\|_{2}^{2}
$$

(b) Find the minimum norm solution of the above least squares minimization problem.

## III. Eigenvalue Problems

(a) First consider the following matrix

$$
B=\left(\begin{array}{rrr}
0 & 0 & 6 \\
1 / 2 & 0 & 0 \\
0 & 1 / 3 & 0
\end{array}\right)
$$

Find any real eigenvalue of $B$ and any associated eigenvector.
(b) Now let $A$ be any $n \times n$ matrix. Show that $\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}$ where $\lambda_{1}, \cdots, \lambda_{n}$ are eigenvalues of $A$. (Hint: Consider characteristic polynomial of $A$ )
(c) Show that $A$ is singular if and only if $\lambda=0$ is an eigenvalue of $A$.

## IV. Iterative Methods

(a) Consider the iterative method:

$$
x_{k+1}=B x_{k}+c, \quad k=1,2, \cdots,
$$

where $B$ is a $n \times n$ matrix and $x_{0}$ and $c$ are arbitrary vectors of $\mathbb{R}^{n}$. Define the spectral radius $\rho(B)$ of $B$ and show that $x_{k}$ converges for all initial vectors $x_{0}$ if $\rho(B)<1$.
(b) Consider the Richardson iterative scheme

$$
x_{k+1}=x_{k}+\omega\left(b-A x_{k}\right), \quad k=1,2, \cdots,
$$

where $A$ is a $n \times n$ matrix and $\omega$ is a positive number. We assume that all the eigenvalues $\lambda_{i}$ of $A$ are real and satisfy $0<\alpha \leq \lambda_{i} \leq \beta$ for $i=1, \cdots, n$ and for some positive values $\alpha$ and $\beta$. Find the condition on the number $\omega$ in terms of $\alpha$ and $\beta$ such that for any initial vector $x_{0}$, the sequence $x_{k}$ converges to the solution of $A x=b$.
(c) Assuming that $\alpha=\min _{1 \leq i \leq n} \lambda_{i}$ and $\beta=\max _{1 \leq i \leq n} \lambda_{i}$ in (b), what value of $\omega$ leads to the fastest convergence of the scheme.

