FIRST NAME:

LAST NAME:

STUDENT ID NUMBER:

SIGNATURE:

PROBLEM 1 Let A be an $m \times n$ matrix and b an $m \times 1$ vector. Consider the least squares problem (LS): find x that minimizes $||Ax - b||_2^2$.

- (a) Give necessary and sufficient conditions for x to be a solution to (LS).
- (b) When is this solution unique?
- (c) When is the corresponding residual vector r = Ax b unique?
- (d) Let

$$A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right), b = \left(\begin{array}{r} 1 \\ 0 \end{array}\right).$$

Find the solution x to (LS) that also minimizes $||x||_2^2$.

PROBLEM 2. A symmetric $n \times n$ matrix A is called Symmetric Positive Definite (SPD) iff (Ax, x) > 0 for all $x \neq 0$.

- (a) Assume n = 2. Show that if A is SPD then A admits a Cholesky factorization, i.e $A = L \cdot L^T$ where L is a nonsingular lower triangular matrix.
- (b) Let

	1	1	1	1 `	\
A =		1	2	3).
	ĺ	1	3	6)

Show that A is SPD and calculate the Cholesky factorization of A.

Problem 3.

- (a) Why does any eigenvalue solver have to be iterative?
- (b) Present the QR-algorithm to solve eigenvalue problems in some detail and state the corresponding theorem for convergence.
- (c) Let $A_k = \begin{pmatrix} c & s \\ s & 0 \end{pmatrix}$, where $c = \cos \theta$ and $s = \sin \theta$. Compute A_{k+1} using QR-iteration, and show that the off-diagonal elements of A_{k+1} are smaller than those in A_k .

PROBLEM 4. Consider a matrix A given by

$$A = \left(\begin{array}{rrrr} 1.009 & -0.009 & -0.999 \\ 0.999 & 0.001 & -0.999 \\ 0.009 & -0.009 & 0.001 \end{array}\right)$$

- (a) Verify that $x = [2, 2, 1]^T$ is a solution of $Ax = [1.001, 1.001, 0.001]^T$. Consider the vectors $y = [2.2, 2.2, 1]^T$ and $z = [202, 202, 201]^T$. Verify that Ax - Ay and Ax - Az have the same infinity vector norm.
- (b) Find an estimation of the condition number of A using the results of (a).
- (c) Verify that

$$A^{-1} = \begin{pmatrix} -899 & 900 & 999 \\ -999 & 1000 & 999 \\ -900 & 900 & 1000 \end{pmatrix}$$

Determine whether or not

$$B = \left(\begin{array}{rrrr} -900 & 900 & 1000\\ -1000 & 1000 & 1000\\ -900 & 900 & 1000 \end{array}\right)$$

is a sufficiently good approximation of the matrix A^{-1} to be used in an iterative method of the form $x_{k+1} = x_k - BAx_k + Bb$ for finding the solution of Ax = b.

(Hint:
$$B \cdot A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
)