Numerical Analysis Screening Exam, Fall 2010

First Name:
LAST NAME:
Student ID Number:
Signature:

Problem 1 Let A be an $m \times n$ matrix and b an $m \times 1$ vector. Consider the least squares problem (LS): find x that minimizes $\|A x-b\|_{2}^{2}$.
(a) Give necessary and sufficient conditions for x to be a solution to (LS).
(b) When is this solution unique?
(c) When is the corresponding residual vector $r=A x-b$ unique?
(d) Let

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right), b=\binom{1}{0} .
$$

Find the solution x to (LS) that also minimizes $\|x\|_{2}^{2}$.

Name:

Name:
Problem 2. A symmetric $n \times n$ matrix A is called Symmetric Positive Definite (SPD) iff $(A x, x)>0$ for all $x \neq 0$.
(a) Assume $n=2$. Show that if A is SPD then A admits a Cholesky factorization, i.e $A=L \cdot L^{T}$ where L is a nonsingular lower triangular matrix.
(b) Let

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6
\end{array}\right)
$$

Show that A is SPD and calculate the Cholesky factorization of A.

Name:
Problem 3.
(a) Why does any eigenvalue solver have to be iterative?
(b) Present the QR-algorithm to solve eigenvalue problems in some detail and state the corresponding theorem for convergence.
(c) Let $A_{k}=\left(\begin{array}{ll}c & s \\ s & 0\end{array}\right)$, where $c=\cos \theta$ and $s=\sin \theta$. Compute A_{k+1} using QR-iteration, and show that the off-diagonal elements of A_{k+1} are smaller than those in A_{k}.

Name:

Names:
Problem 4. Consider a matrix A given by

$$
A=\left(\begin{array}{rrr}
1.009 & -0.009 & -0.999 \\
0.999 & 0.001 & -0.999 \\
0.009 & -0.009 & 0.001
\end{array}\right)
$$

(a) Verify that $x=[2,2,1]^{T}$ is a solution of $A x=[1.001,1.001,0.001]^{T}$. Consider the vectors $y=[2.2,2.2,1]^{T}$ and $z=[202,202,201]^{T}$. Verify that $A x-A y$ and $A x-A z$ have the same infinity vector norm.
(b) Find an estimation of the condition number of A using the results of (a).
(c) Verify that

$$
A^{-1}=\left(\begin{array}{rrr}
-899 & 900 & 999 \\
-999 & 1000 & 999 \\
-900 & 900 & 1000
\end{array}\right)
$$

Determine whether or not

$$
B=\left(\begin{array}{rrr}
-900 & 900 & 1000 \\
-1000 & 1000 & 1000 \\
-900 & 900 & 1000
\end{array}\right)
$$

is a sufficiently good approximation of the matrix A^{-1} to be used in an iterative method of the form $x_{k+1}=x_{k}-B A x_{k}+B b$ for finding the solution of $A x=b$.
(Hint: $B \cdot A=\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$)

