Numerical Analysis Screening Exam, Fall 2009

First Name:

Last Name:

Problem 1 (Least squares)

1. Define the Least Squares process using QR factorization for solving $A x=b$, where $A \in \mathbb{R}^{m \times n}$.
2. Let $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 0 \\ 2 & 2\end{array}\right), b=\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)$.

Using Householder QR factorization solve $A x=b$.
Problem 2 (Eigenvalue problems)

1. State the Schur Theorem.
2. Using the Gram-Schmidt process define the othonormal set $\left\{q_{1}, q_{2}\right\}$ for set of vectors $\left\{v_{1}, v_{2}\right\}$.
3. Find the Schur decomposition of matrix $A=\left(\begin{array}{cc}5 & 7 \\ -2 & -4\end{array}\right)$.

Problem 3 (Iterative Methods)
Consider an iterative scheme of the form

$$
(r I+H) x_{k+1}=(r I-H) x_{k}+b,
$$

where H is a symmetric positive definite $n \times n$ matrix, $b \in \mathbb{R}^{n}$ and r is a positive constant.
(a) Rewrite the iteration in the form $x_{k+1}=B x_{k}+c$.
(b) Show that the sequence x_{k} converges for any x_{0}.
(c) If the matrix is only non-negative definite, does the sequence still converge for any b and x_{0} ?

Problem 4 (Linear Systems)

(1) Let A be any $n \times n$ matrix and $\|\cdot\|$ be any norm on \mathbb{R}^{n} (Euclidean n-dimensional space). If $\|I-A\|<1$, then show that A is invertible and derive the estimate

$$
\left\|A^{-1}\right\|<\frac{1}{1-\|I-A\|}
$$

(2) An $n \times n$ matrix $A=\left[a_{i, j}\right]$ is strictly diagonally dominant if

$$
\left|a_{i, i}\right|>\sum_{j=1}^{n}\left|a_{i, j}\right|, \text { for } i=1, \cdots, n
$$

Show that any strictly diagonally dominant matrix A is invertible. (Hint: recall that $\|A\|_{\infty}=\max _{1 \leq 1 \leq n}\left\{\sum_{j=1}^{n}\left|a_{i, j}\right|\right\}$ and write $A=D B$ where D is the diagonal part of A and show that $\|I-B\|_{\infty}<1$.)

