Numerical Analysis Screening Exam, Spring 2011

First Name:
LAST NAME:
Student ID Number:
Signature:

Problem 1. (Linear Equations)
(a) Give a definition of matrix A being positive definite.
(b)-i State any theorem for solving $A x=b$ with symmetric positive definite (SPD) matrices.
(b)-ii What are the computational advantages for solving a problem $A x=b$ with SPD matrices. Be specific.
(c) Find the largest interval for α so that A is positive definite:

$$
A=\left(\begin{array}{lll}
1 & \alpha & \alpha \\
\alpha & 1 & \alpha \\
\alpha & \alpha & 1
\end{array}\right)
$$

(Hint: use Gaussian elimination.)

Name:
Problem 2. (Eigenvalue Problems)
(a) Let $A=\left[a_{i, j}\right]$ be an $n \times n$ matrix. Prove Gerschgorin's Theorem which states the following: For $i=1, \cdots, n$ let $R_{i}=\sum_{j=1, j \neq i}^{n}\left|a_{i, j}\right|$. Every eigenvalue of A falls within one of the closed discs in the complex plane with center at $a_{i, i}$ and radius R_{i}. (Hint. Let

$$
\begin{equation*}
A x=\lambda x \tag{1}
\end{equation*}
$$

and assume the largest component of x in absolute value is x_{k}. Consider the k-equation of (1).)
(b) Consider the matrix

$$
A=\left(\begin{array}{ccccc}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right)
$$

Show that A is positive definite. (Hint. Use Gerschgorin's Theorem to show that A is positive semi-definite. Then consider the equation $A x=0$, where the first component of x equals 1 .)
(c) Let

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right) .
$$

Find the eigenvalues of A and verify that Gerschgorin's Theorem holds.

Name:
Problem 3. (Iterative Methods)
(a) Let L be a strictly lower triangular and U be a strictly upper triangular $n \times n$ matrices. For any positive number ω define

$$
B_{\omega}=(1-\omega L)^{-1}[(1-\omega) I+\omega U]
$$

Show that $\rho\left(B_{\omega}\right) \geq|\omega-1|$ where $\rho\left(B_{\omega}\right)$ is the spectral radius of B_{ω}. (Hint. Calculate $\operatorname{det}\left(B_{\omega}\right)$ directly and by the product of eigenvalues and compare.)
(b) Consider solving $A x=b$ where A is an $n \times n$ matrix and $x, b \in \mathbb{R}^{n}$.
(i) Give the matrix form of the SOR iterative method.
(ii) Using the result in question (a) above, show that the SOR method with parameter ω can only converge for $0<\omega<2$.
(c) Consider the equation $A x=b$, where $x \in \mathbb{R}^{3}$ and

$$
A=\left(\begin{array}{ccc}
0 & 2 & 4 \\
1 & -1 & 1 \\
1 & -1 & 2
\end{array}\right), b=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Can the SOR method be applied to this equation? Justify your answer.

Names:
Problem 4. (Least Squares Problem)
(a) Let $A \in R^{m \times n}$. Give a detailed description of the SVD of A and present briefly an algorithm to solve an overdetermined system using SVD.
(b) What are the advantages and disadvantages of using SVD for overdetermined systems.
(c) Consider the overdetermined system $A u=b$ with

$$
A=\left(\begin{array}{cc}
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right), \text { and } b=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

Find the family of least squares solutions using any method that is easy for hand calculation, and finally find the minimum-norm solution to the least squares problems.

