Spring 2014 Math 541a Exam

1. For known values $x_{i, 1}, x_{i, 2}, i=1, \ldots, n$ let

$$
Z_{i}=\beta_{1} x_{i, 1}+\epsilon_{i}
$$

and

$$
Y_{i}=\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\epsilon_{i} \quad i=1, \ldots, n
$$

where $\epsilon_{i}, i=1,2, \ldots, n$ are independent normal random variables with mean 0 and variance 1 .
(a) Given the data $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)$ compute the maximum likelihood estimate of β_{1} and show that it achieves the Cramer-Rao lower bound. Throughout this part and the following, make explicit any non-degeneracy assumptions that may need to be made.
(b) Based on $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$, compute the Cramer-Rao lower bound for the estimation of $\left(\beta_{1}, \beta_{2}\right)$, and in particular compute a variance lower bound for the estimation of β_{1} in the presence of the unknown β_{2}.
(c) Compare the variance lower bound in (a), which is the same as the one for the model for Y_{i} where β_{2} is known to be equal to zero, to the one in (b), where β_{2} is unknown, and show the latter one is always at least as large as the former.
2. Suppose we observe the pair (X, Y) where X has a $\operatorname{Poisson}(\lambda)$ distribution and Y has a $\operatorname{Bernoulli}(\lambda /(1+\lambda))$ distribution, that is,

$$
P_{\lambda}(X=j)=\frac{\lambda^{j} e^{-\lambda}}{j!}, j=0,1,2, \ldots
$$

and

$$
P_{\lambda}(Y=1)=\frac{\lambda}{1+\lambda}=1-P_{\lambda}(Y=0)
$$

with X and Y independent, and $\lambda \in(0, \infty)$ unknown.
(a) Find a one-dimensional sufficient statistic for λ based on (X, Y).
(b) Is there a UMVUE (uniform minimum variance unbiased estimator) of λ ? If so, find it.
(c) Is there a UMVUE of $\lambda /(1+\lambda)$? If so, find it.

