Geometry and Topology Graduate Exam

Spring 2014
Solve all SEVEN problems. Partial credit will be given to partial solutions.
Problem 1. Let X_{n} denotes the complement of n distinct points in the plane \mathbb{R}^{2}. Does there exist a covering map $X_{2} \rightarrow X_{1}$? Explain.
Problem 2. Let $D=\{z \in \mathbb{C} ;|z| \leq 1\}$ denote the unit disk, and choose a base point z_{0} in the boundary $S^{1}=\partial D=\{z \in \mathbb{C} ;|z|=1\}$. Let X be the space obtained from the union of D and $S^{1} \times S^{1}$ by gluing each $z \in S^{1} \subset D$ to the point $\left(z, z_{0}\right) \in S^{1} \times S^{1}$. Compute all homology groups $H_{k}(X ; \mathbb{Z})$.
Problem 3. Let $B^{n}=\left\{x \in \mathbb{R}^{n} ;\|x\| \leq 1\right\}$ denote the n-dimensional closed unit ball, with boundary $S^{n-1}=\left\{x \in \mathbb{R}^{n} ;\|x\|=1\right\}$. Let $f: B^{n} \rightarrow \mathbb{R}^{n}$ be a continuous map such that $f(x)=x$ for every $x \in S^{n-1}$. Show that the origin 0 is contained in the image $f\left(B^{n}\right)$. (Hint: otherwise, consider $S^{n-1} \rightarrow B^{n} \xrightarrow{f} \mathbb{R}^{n}-\{0\}$.)
Problem 4. Consider the following vector fields defined in \mathbb{R}^{2} :

$$
\mathbf{X}=2 \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}, \quad \text { and } \quad \mathbf{Y}=\frac{\partial}{\partial y}
$$

Determine whether or not there exists a (locally defined) coordinate system (s, t) in a neighborhood of $(x, y)=(0,1)$ such that

$$
\mathbf{X}=\frac{\partial}{\partial s}, \quad \text { and } \quad \mathbf{Y}=\frac{\partial}{\partial t}
$$

Problem 5. Let M be a differentiable (not necessarily orientable) manifold. Show that its cotangent bundle

$$
T^{*} M=\left\{(x, u) ; x \in M \text { and } u: T_{x} M \rightarrow \mathbb{R} \text { linear }\right\}
$$

is a manifold, and is orientable.
Problem 6. Calculate the integral $\int_{S^{2}} \omega$ where S^{2} is the standard unit sphere in \mathbb{R}^{3} and where ω is the restriction of the differential 2 -form

$$
\left(x^{2}+y^{2}+z^{2}\right)(x d y \wedge d z+y d z \wedge d x+z d x \wedge d y)
$$

Problem 7. Let M be a compact m-dimensional submanifold of $\mathbb{R}^{m} \times \mathbb{R}^{n}$. Show that the space of points $x \in \mathbb{R}^{m}$ such that $M \cap \mathbb{R}^{n}$ is infinite has measure 0 in \mathbb{R}^{m}.

