Work all problems and show all your work for full credit. This exam is closed book, closed notes, no calculator or electronic devices of any kind.

1. (a) Let $\left\{f_{k}\right\}_{k=1}^{n}$ be n linearly independent real valued functions in $L_{2}(a, b)$, and let Q be the $n \times n$ matrix with entries $Q_{i, j}=\int_{a}^{b} f_{i}(x) f_{j}(x) d x$. Show that Q is positive definite symmetric and therefore invertible.
(b) Let g be a real valued functions in $L_{2}(a, b)$ and find the best (in $L_{2}(a, b)$) approximation to g in $\operatorname{span}\left\{f_{k}\right\}_{k=1}^{n}$.
2. Let A be a 3×3 nonsingular matrix which can be reduced to the matrix

$$
U=\left[\begin{array}{ccc}
1 & u_{1} & u_{2} \\
0 & 1 & u_{3} \\
0 & 0 & 1
\end{array}\right]
$$

using the following sequence of elementary row operations:
(i) α_{1} times Row 1 is added to Row 2.
(ii) α_{2} times Row 1 is added to Row 3.
(iii) Row 2 is multiplied by $\frac{1}{\alpha_{3}}$.
(iv) α_{4} times Row 2 is added to Row 3 .
(a) Find an $L U$ decomposition for the matrix A.
(b) Let $b=\left[\begin{array}{lll}b_{1} & b_{2} & b_{3}\end{array}\right]^{T}$ be an arbitrary vector in R^{3} and let the vector $x=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}$ in R^{3} be the unique solution to the linear system $A x=b$. Find an expression for x_{3} in terms of the $\alpha_{i}{ }^{\prime} s$, the $b_{i}{ }^{\prime} s$, and the $u_{i}{ }^{\prime} s, i=1,2,3$.
3. In this problem we consider the iterative solution of the linear system of equations $A x=b$ with the following $(n-1) \times(n-1)$ matrices

$$
A=\left(\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & \ddots & \ddots & 0 \\
0 & \ddots & \ddots & -1 \\
0 & 0 & -1 & 2
\end{array}\right)
$$

(a) Show that the vectors $x^{k}=\left(\sin \frac{\pi k}{n}, \sin \frac{2 \pi k}{n}, \cdots, \sin \frac{\pi(n-1) k}{n}\right)$, for $k=1, \cdots, n-1$ are eigenvectors of B_{J}, the Jacobi iteration matrix corresponding to the matrix A given above.
(b) Determine whether or not the Jacobi's method would converge for all initial conditions x^{0}.
(c) Let L and U be, respectively, the lower and upper triangular matrices with zero diagonal elements such that $B_{J}=L+U$, and show that the matrix $\alpha L+\alpha^{-1} U$ has the same eigenvalues as B_{J} for all $\alpha \neq 0$.
(d) Show that an arbitrary nonzero eigenvalue, λ, of the iteration matrix

$$
H(\omega)=(I-\omega L)^{-1}((1-\omega) I+\omega U)
$$

for the Successive Over Relaxation (SOR) method satisfies the following equation

$$
\lambda^{2}-2(1-\omega) \lambda-\mu^{2} \omega^{2} \lambda+(1-\omega)^{2}=0
$$

where μ is an eigenvalue of B_{J} (Hint: use the result of (c)).
(e) For $n=4$, find the spectral radius of $H(1)$.
4. (a) Find the singular value decomposition (SVD) of the matrix

$$
A=\left[\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right]
$$

(b) Let $\left\{\lambda_{k}\right\}$ and $\left\{\sigma_{k}\right\}$ be the sets of eigenvalues and singular values of $n \times n$ matrix A. Show that: $\min _{k} \sigma_{k} \leq \min _{k}\left|\lambda_{k}\right|$ and $\max _{k} \sigma_{k} \geq \max _{k}\left|\lambda_{k}\right|$.
(c) Let A be a full column rank $m \times n$ matrix with singular value decomposition $A=U \Sigma V^{*}$, where V^{*} indicates the conjugate transpose of V.
(1) Compute the SVD of $A\left(A^{*} A\right)^{-1} A^{*}$ in terms of U, Σ, and V.
(2) Let $\|\cdot\|=\sup _{x \neq 0} \frac{\| \| A x \|_{2}}{\|x\|_{2}}$ be the matrix norm induced by the vector 2-norm, and let $\sigma_{\max }$ be the largest singular value of A. Show that $||A||=\sigma_{\max }$.

