Fall 2013 Math 541a Exam

1. For $p \in (0, 1)$ unknown, let X_0, X_1, \ldots be independent identically distributed random variables taking values in $\{0, 1\}$ with distribution

$$P(X_i = 1) = 1 - P(X_i = 0) = p,$$

and suppose that

$$T_n = \sum_{i=0}^{n-1} I(X_i = 1, X_{i+1} = 1).$$
(1)

is observed.

- (a) Calculate the mean and variance of T_n .
- (b) Find a consistent method of moments $\hat{p}_n = g_n(T_n)$ estimator for the unknown p as a function g_n of T_n that may depend on n, and prove that your estimate is consistent for p.
- (c) Show that T_n is not the sum of independent, identically distributed random variables. Nevertheless, determine the non-trivial limiting distribution of \hat{p}_n , after an appropriate centering and scaling, as if (1) was the sum of i.i.d. variables and has the same mean and variance as the one computed in part (a).
- (d) Explain why you would, or would not, expect \hat{p}_n to have the same limiting distribution as the one determined in part (c).
- 2. Let X_1, X_2, \ldots, X_n be independent identically distributed random variables with density given by

$$f_{\beta}(x) = \frac{x^{\alpha-1}}{\beta^{\alpha}\Gamma(\alpha)} \exp(-x/\beta), \text{ for } x > 0$$

where $\alpha > 0$, and is known. Suppose it is desired to estimate β^3 .

- (a) Find the Cramer-Rao lower bound for the variance of an unbiased estimator of β^3 .
- (b) Find a complete and sufficient statistic for β . Then, compute its k^{th} moment, where k is an positive integer.
- (c) If a UMVUE (uniform minimum variance unbiased estimator) exists, find its variance and compare it to the bound in part (a).