Algebra Qualifying Exam - Fall 2013

- 1. Let H be a subgroup of the symmetric group S_5 . Can the order of H be 15, 20 or 30?
- 2. Let R be a PID and M a finitely generated torsion module of R. Show that M is a cyclic R-module if and only if for any prime p of R either pM = M or M/pM is a cyclic R-module.
- Let R = C[x₁,...,x_n] and suppose I is a proper non-zero ideal of R. The coefficients of a matrix A ∈ M_n(R) are polynomials in x₁,..., x_n and can be evaluated at β ∈ Cⁿ; write A(β) ∈ M_n(C) for the matrix so obtained. If for some A ∈ M_n(R) and all α ∈ Var(I), A(α) = 0_{n×n}, show that for some integer m, A^m ∈ M_n(I).
- 4. If R is a noetherian unital ring, show that the power series ring R[[x]] is also a noetherian unital ring.
- 5. Let p be a prime. Prove that $f(x) = x^p x 1$ is irreducible over $\mathbb{Z}/p\mathbb{Z}$. What is the Galois group? (Hint: observe that if α is a root of f(x), then so is $\alpha + i$ for $i \in \mathbb{Z}/p\mathbb{Z}$.)
- 6. Let R be a finite ring with no nilpotent elements. Show that R is a direct product of fields.
- 7. Let $K \subset \mathbb{C}$ be the field obtained by adjoining all roots of unity in \mathbb{C} to \mathbb{Q} . Suppose $p_1 < p_2$ are primes, $a \in \mathbb{C} \setminus K$, and write L for a splitting field of

$$g(x) = (x^{p_1} - a)(x^{p_2} - a)$$

over K. Assuming each factor of g(x) is irreducible, determine the order and the structure of Gal(L/K).