1. (a) Let $f_{\theta}(x), \theta \in \Theta \subseteq \mathbb{R}$, be a family of density functions with respect to some common measure. If we say that this family has the monotone likelihood ratio (MLR) property in the real-valued statistic $T=T(x)$, what two properties must hold?
(b) Taking $\Theta=(0, \infty)$, let $f_{\theta}(x), x=\left(x_{1}, \ldots, x_{n}\right)$, be the joint density of a random sample of n i.i.d. uniform $(0, \theta)$ observations:

$$
f_{\theta}(x)= \begin{cases}\theta^{-n}, & \text { if } x_{i}<\theta \text { for all } i=1, \ldots, n \\ 0, & \text { otherwise }\end{cases}
$$

Show that this family has the MLR property, and give the statistic T.
(c) Given $\alpha \in(0,1)$ and $\theta_{0}>0$, find a uniformly most powerful level- α test of

$$
H_{0}: \theta \leq \theta_{0} \quad \text { vs. } \quad H_{1}: \theta>\theta_{0}
$$

in terms of $T(X)$. Find any critical values and randomization constants explicitly.
2. Recall that a \log-normal distribution $\ln \mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$ is a continuous probability distribution of a random variable whose logarithm is normally distributed $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$. That is, if $X \sim \ln \mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$, then $\log X \sim \mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$. Suppose the only random number generator that you have is the one for log-normal distributions $\ln \mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$. Propose an MCMC algorithm for estimating the following integral

$$
I=\int_{0}^{\infty} e^{-x^{4}-x^{6}-x^{8}} \frac{e^{x}}{\alpha} d x
$$

where $\alpha=\int_{0}^{\infty} e^{-x^{4}-x^{6}-x^{8}} d x$ (is unknown). Describe the algorithm in detail.

