1. (a) Consider an independent identically distributed sequence $X_{1}, X_{2}, \cdots, X_{n+1}$ taking values 0 or 1 with probability distribution

$$
P\left\{X_{i}=1\right\}=1-P\left\{X_{i}=0\right\}=p
$$

Uniformly choose M fragments $F_{1}, F_{2}, \cdots, F_{M}$ of length 2 starting in the interval [1, n], that is, $F_{i}=\left(X_{j_{i}}, X_{j_{i}+1}\right)$ for some $1 \leq j_{i} \leq n$. Let $\mathbf{W}=(1,1)$.

- Let $N_{\mathbf{W}}$ be the number of times the word \mathbf{W} occurs among the M fragments. Calculate $E\left(N_{\mathbf{W}}\right)$.
- Calculate the probability $P\left(F_{1}=\mathbf{W}, F_{2}=\mathbf{W}\right)$.
- Calculate $\operatorname{Var}\left(N_{\mathbf{W}}\right)$.
(Note: Due to time constraints, you can ignore the boundary effect.)

2. Let T and C be independent Geometric random variables with success probability of r and s, respectively. That is

$$
\begin{aligned}
& P[T=j]=r(1-r)^{j-1} ; j=1,2, \cdots \\
& P[C=j]=s(1-s)^{j-1} ; j=1,2, \cdots
\end{aligned}
$$

Let $X=(\min (T, C), I(T \leq C))$. Denote $X_{1}=\min (T, C), X_{2}=I(T \leq C)$, where $I(\cdot)$ is the indicator function.
(a) What is the joint distribution of X ?
(b) Calculate $E X=\left(E X_{1}, E X_{2}\right)$ and the covariance matrix of $X=\left(X_{1}, X_{2}\right)$.
(c) Let $T_{1}, T_{2}, \cdots, T_{n}$ be a random sample from T, and $C_{1}, C_{2}, \cdots, C_{n}$ be a random sample from C. Define

$$
\begin{aligned}
& S_{1}=\sum_{i=1}^{n} \min \left(T_{i}, C_{i}\right) \\
& S_{2}=\sum_{i=1}^{n} I\left(T_{i} \leq C_{i}\right) .
\end{aligned}
$$

What is the maximum likelihood estimate (\hat{r}, \hat{s}) of (r, s), in terms of S_{1} and S_{2} ?

