GEOMETRY TOPOLOGY QUALITFYING EXAM SPRING 2013

Solve all of the problems that you can. Partial credit will be given for partial solutions.

(1) Consider the form

$$\boldsymbol{\omega} = (x^2 + x + y)dy \wedge dz$$

- on \mathbb{R}^3 . Let $S^2 = \{x^2 + y^2 + z^2 = 1\} \subset \mathbb{R}^3$ be the unit sphere, and $i: S^2 \to \mathbb{R}^3$ the inclusion. (a) Calculate $\int_{S^2} \omega$.
- (b) Construct a closed form α on \mathbb{R}^3 such that $i^*\alpha = i^*\omega$, or show that such a form α does not exist.
- (2) Find all points in \mathbb{R}^3 in a neighborhood in which the functions $x, x^2 + y^2 + z^2 1, z$ can serve as a local coordinate system.
- (3) Prove that the real projective space $\mathbb{R}P^n$ is a smooth manifold of dimension *n*.
- (4) (a) Show that every closed 1-form on Sⁿ, n > 1 is exact.
 (b) Use this to show that every closed 1-form on RPⁿ, n > 1 is exact.
- (5) Let X be the space obtained from \mathbb{R}^3 by removing the three coordinate axes. Calculate $\pi_1(X)$ and $H_*(X)$.
- (6) Let $X = T^2 \{p, q\}, p \neq q$ be the twice punctured 2-dimensional torus.
 - (a) Compute the homology groups $H_*(X, \mathbb{Z})$.
 - (b) Compute the fundamental group of *X*.
- (7) (a) Find all of the 2-sheeted covering spaces of $S^1 \times S^1$.
 - (b) Show that if a path-connected, locally path connected space X has $\pi_1(X)$ finite, then every map $X \to S^1$ is nullhomotopic.
- (8) (a) Show that if $f: S^n \to S^n$ has no fixed points then deg $(f) = (-1)^{n+1}$.
 - (b) Show that if X has S^{2n} as universal covering space then $\pi_1(X) = \{1\}$ or \mathbb{Z}_2 .

Date: February 1, 2013.