GEOMETRY TOPOLOGY QUALITFYING EXAM SPRING 2013

Solve all of the problems that you can. Partial credit will be given for partial solutions.
(1) Consider the form

$$
\omega=\left(x^{2}+x+y\right) d y \wedge d z
$$

on \mathbb{R}^{3}. Let $S^{2}=\left\{x^{2}+y^{2}+z^{2}=1\right\} \subset \mathbb{R}^{3}$ be the unit sphere, and $i: S^{2} \rightarrow \mathbb{R}^{3}$ the inclusion.
(a) Calculate $\int_{s^{2}} \omega$.
(b) Construct a closed form α on \mathbb{R}^{3} such that $i^{*} \alpha=i^{*} \omega$, or show that such a form α does not exist.
(2) Find all points in \mathbb{R}^{3} in a neighborhood in which the functions $x, x^{2}+y^{2}+z^{2}-1, z$ can serve as a local coordinate system.
(3) Prove that the real projective space $\mathbb{R} P^{n}$ is a smooth manifold of dimension n.
(4) (a) Show that every closed 1 -form on $S^{n}, n>1$ is exact.
(b) Use this to show that every closed 1 -form on $\mathbb{R} P^{n}, n>1$ is exact.
(5) Let X be the space obtained from \mathbb{R}^{3} by removing the three coordinate axes. Calculate $\pi_{1}(X)$ and $H_{*}(X)$.
(6) Let $X=T^{2}-\{p, q\}, p \neq q$ be the twice punctured 2-dimensional torus.
(a) Compute the homology groups $H_{*}(X, \mathbb{Z})$.
(b) Compute the fundamental group of X.
(7) (a) Find all of the 2 -sheeted covering spaces of $S^{1} \times S^{1}$.
(b) Show that if a path-connected, locally path connected space X has $\pi_{1}(X)$ finite, then every map $X \rightarrow S^{1}$ is nullhomotopic.
(8) (a) Show that if $f: S^{n} \rightarrow S^{n}$ has no fixed points then $\operatorname{deg}(f)=(-1)^{n+1}$.
(b) Show that if X has $S^{2 n}$ as universal covering space then $\pi_{1}(X)=\{1\}$ or \mathbb{Z}_{2}.

[^0]
[^0]: Date: February 1, 2013.

