Math 505a 2013 Spring Qualifying Exam

1. a) Let X and Y be square integrable random variables such that

$$
\begin{equation*}
E(X \mid Y)=Y \quad \text { and } \quad E(Y \mid X)=X \tag{1}
\end{equation*}
$$

Show that

$$
\begin{equation*}
P(X=Y)=1 \tag{2}
\end{equation*}
$$

b) Prove that (1) implies (2) under the weakened assumption that X and Y are integrable.
2. Suppose k balls are tossed into n boxes, with all n^{k} possibilities equally likely. Let D be the number of boxes that contain exactly 2 balls.
a) Compute $p:=P($ exactly 2 balls land in box 1$)$.
b) In terms of p, give an exact expression for the mean $E D$.
c) Compute $r:=P$ (exactly 2 balls land in box 1 and exactly 2 balls land in box 2).
d) Give an exact expression for the second moment $E D^{2}$ in terms of p and r.
e) Compute the variance of D.
3. a) Suppose $g(u):=E u^{S}$ is the probability generating function of a nonnegative integer valued random variable S satisfying $P(S>0)>0$. Let T be distributed as S, conditional on the event $S>0$. Express $h(u):=E u^{T}$, the probability generating function of T, in terms of $g(u)$.

In parts b) and c) below, N is a nonnegative integer valued random variable with probability generating function $f(u):=E u^{N}$, and S is the number of heads in N tosses of a $p \in(0,1)$ coin, with all coin tosses having probability p of coming up heads, independently of each other and of N.
b) Write the probability generating function $g(u):=E u^{S}$ of S in a simple form.
c) Now combine parts a) and b): what is the probability generating function h of the number T of heads, in N tosses of a p-coin, conditional on getting at least one head, when N has probability generating function f ?
Parts d,e) can be worked on even if you are stumped by a,b,c).
d) Suppose someone claims that for $\alpha \in(0,1)$, the function

$$
f(u):=1-(1-u)^{\alpha}
$$

is a probability generating function of a nonnegative, non constant integer valued random variable N. What properties of f must you check? Is the hypothesis $\alpha>0$ used? What happens in the cases $\alpha=0, \alpha=1$ and $\alpha>1$?
e) Combine parts a)-d), that is suppose $\alpha \in(0,1), N$ has the generating function $f(u):=1-(1-u)^{\alpha}$, and T is the number of heads in N tosses of a p-coin, conditional on getting at least one head. Do N and T have the same distribution?

