DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Fall 2012

1. Consider the product space $\mathbb{R}^{2} \times \mathbb{R}$ and let $P: \mathbb{R}^{2} \times \mathbb{R} \rightarrow \mathbb{R}$ be projection onto the second factor, $P(x, t)=t$. For two t values, $t_{1}<t_{2}$ define the "copies" of \mathbb{R}^{2}, $X=P^{-1}\left(t_{1}\right)$ and $Y=P^{-1}\left(t_{2}\right)$ and the mapping

$$
T: X \rightarrow Y \quad \text { where } \quad y=T(x)=\phi\left(t_{2}, t_{1}, x\right)
$$

where $\phi\left(t_{2}, t_{1}, x\right)$ is the solution $\phi\left(t, t_{1}, x\right)$ of $y^{\prime}=A(t) y, \quad y\left(t_{1}\right)=x$, evaluated at t_{2}, and

$$
A(t)=\left(\begin{array}{cc}
-2+\sin t & \cos t \\
\sin 4 t & 1+\cos t
\end{array}\right)
$$

Show (1) T is a diffeomorphism and (2) if μ is Borel measure then

$$
\mu(T(B)) \rightarrow 0 \quad \text { as } \quad t_{2} \rightarrow 0
$$

for any Borel set B.
2. Define the mapping $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}=[0, \infty)$ by

$$
f(x)=\frac{a x^{2}}{1+x^{2}}, \quad a>0, x \geq 0
$$

As a increases, starting near zero, a bifurcation takes place. Describe the type of bifurcation, find the critical value a_{c} and the point $x_{\text {bif }}$ at which the bifurcation takes place.
3. Consider the mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
f(x)=\left(\begin{array}{ll}
1 & 3 \\
5 & 7
\end{array}\right) x+\binom{x_{1}^{2}}{2 x_{2}^{2}} .
$$

Show
(i) The first quadrant $x_{1} \geq 0, x_{2} \geq 0$, call it Q_{+}, is invariant, i.e. $f\left(Q_{+}\right) \subset Q_{+}$and
(ii) $x \in Q_{+}, x \neq(0,0), \Longrightarrow\left\|f^{n}(x)\right\| \rightarrow \infty$ as $n \rightarrow \infty$, where

$$
f^{n} \doteq f \circ f \circ \cdots \circ f
$$

4. Let u be a smooth solution of

$$
\begin{aligned}
& u_{t t}-\Delta u=0 \text { in } \mathbb{R}^{3} \times(0, \infty) \\
& u=g, u_{t}=h \text { on } \mathbb{R}^{3} \times\{t=0\}
\end{aligned}
$$

where g and h are smooth and have compact support. Prove the existence of $C>0$ such that

$$
|u(x, t)| \leq \frac{C}{t}
$$

for all $x \in \mathbb{R}^{3}$ and $t>0$.
5. (a) Solve the linear partial differential equation

$$
e^{x} u_{x}+u_{y}=u \text { with } u(x, 0)=g(x)
$$

(b) Solve the nonlinear partial differential equation

$$
x^{2} u_{x}+y^{2} u_{y}=u^{2} \text { with } u=1 \text { on the line } y=2 x
$$

6. Write down the explicit formula for the solution of

$$
\begin{array}{r}
u_{t}-\Delta u+c u=f \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u=g \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{array}
$$

