- 1. Let X_1, \ldots, X_n be a random sample from a distribution with variance $\operatorname{Var}(X_1) = \sigma^2 < \infty$, and let $T_n = T_n(X_1, \ldots, X_n)$ be some statistic.
 - (a) Write down an expression for the jackknife estimator V_n of $Var(T_n)$ in terms of

 $T_{n-1,i} = T_{n-1}(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n), \quad i = 1, \dots, n.$

(b) Now let $T_n = \overline{X}_n = n^{-1} \sum_{i=1}^n X_i$ be the sample mean. Show that: i. $Var(T_n) = \sigma^2/n$ ii.

$$W_n = \frac{1}{n(n-1)} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

is an unbiased estimator of $\operatorname{Var}(T_n)$

iii. $V_n = W_n$

2. Given

- an index set S;
- a distribution $\pi = (\pi_i)$ on S, and $\pi_i > 0$ for all $i \in S$;
- a Markov chain on S with transition matrix $\mathbf{Q} = (q_{ij})$, where $q_{ij} > 0$ for all $i \neq j$ (the reference chain).

We construct a new Markov chain whose transition matrix $\mathbf{P} = (p_{ij})$ is given by

$$p_{ij} = q_{ij} \frac{\pi_j \, q_{ji}}{\pi_i \, q_{ij} + \pi_j \, q_{ji}}$$

(a) Show that

- i. This new chain is reversible.
- ii. The stationary distribution of this chain is π .

(b) Sketch an algorithm that generates random samples whose marginal distribution is π .