Geometry-Topology Qualitfying exam Fall 2012

Solve all of the problems. Partial credit will be given for partial answers.

1. Denote by $S^{1} \subset \mathbf{R}^{2}$ the unit circle and consider the torus $T^{2}=S^{1} \times S^{1}$. Now, define $A \subset T^{2}=S^{1} \times S^{1}$ by

$$
A=\left\{(x, y, z, w) \in T^{2} \mid(x, y)=(0,1) \text { or }(z, w)=(0,1)\right\}
$$

Compute $H^{*}\left(T^{2}, A\right)$. Here we regard S^{1} as a subset of the plane, hence we indicate points on S^{1} as ordered pairs.
2. Denote by S^{1} and S^{2} the circle and sphere respectively. Recall that the definition of the smash product $X \wedge Y$ of two pointed spaces is the quotient of $X \times Y$ by $\left(x, y_{0}\right) \sim\left(x_{0}, y\right)$.

Show that $S^{1} \times S^{1}$ and $S^{1} \wedge S^{1} \wedge S^{2}$ have isomorphic homology groups in all dimensions, but their universal covering spaces do not.
3. Let X be a CW-complex with one vertex, two one cells and 3 two cells whose attaching maps are indicated below.

(a) Compute the homology of X.
(b) Present the fundamental group of X and prove its nonabelian.
(Justify your work.)
4. Does there exist a smooth embedding of the projective plane $\mathbf{R} P^{2}$ into \mathbf{R}^{2} ? Justify your answer.
5. Let M be a manifold, and let $C^{\infty}(M)$ be the algebra of C^{∞} functions $M \rightarrow$ R. Explain the relationship between vector fields on M and $C^{\infty}(M)$. If we consider the vector fields X and Y as maps $C^{\infty}(M) \rightarrow C^{\infty}(M)$ is the composition map $X Y$ also a vector field? What about $[X, Y]=X Y-Y X$? Explain.
6. Let S be the unit sphere defined by $x^{2}+y^{2}+z^{2}+w^{2}=1$ in \mathbf{R}^{4}. Compute $\int_{S} \omega$ where $\omega=\left(w+w^{2}\right) d x \wedge d y \wedge d z$.
7. Does the equation $x^{2}=y^{3}$ define a smooth submanifold in \mathbf{R}^{3} ? Prove your claim.

