Geometry-Topology Qualitying exam Fall 2012

Solve all of the problems. Partial credit will be given for partial answers.

1. Denote by $S^1 \subset \mathbf{R}^2$ the unit circle and consider the torus $T^2 = S^1 \times S^1$. Now, define $A \subset T^2 = S^1 \times S^1$ by

$$A = \{ (x, y, z, w) \in T^2 \mid (x, y) = (0, 1) \text{ or } (z, w) = (0, 1) \}.$$

Compute $H^*(T^2, A)$. Here we regard S^1 as a subset of the plane, hence we indicate points on S^1 as ordered pairs.

2. Denote by S^1 and S^2 the circle and sphere respectively. Recall that the definition of the smash product $X \wedge Y$ of two pointed spaces is the quotient of $X \times Y$ by $(x, y_0) \sim (x_0, y)$.

Show that $S^1 \times S^1$ and $S^1 \wedge S^1 \wedge S^2$ have isomorphic homology groups in all dimensions, but their universal covering spaces do not.

3. Let X be a CW-complex with one vertex, two one cells and 3 two cells whose attaching maps are indicated below.

- (a) Compute the homology of X.
- (b) Present the fundamental group of X and prove its nonabelian.

(Justify your work.)

- 4. Does there exist a smooth embedding of the projective plane $\mathbb{R}P^2$ into \mathbb{R}^2 ? Justify your answer.
- 5. Let M be a manifold, and let $C^{\infty}(M)$ be the algebra of C^{∞} functions $M \to \mathbb{R}$. Explain the relationship between vector fields on M and $C^{\infty}(M)$. If we consider the vector fields X and Y as maps $C^{\infty}(M) \to C^{\infty}(M)$ is the composition map XY also a vector field? What about [X, Y] = XY YX? Explain.
- 6. Let S be the unit sphere defined by $x^2 + y^2 + z^2 + w^2 = 1$ in \mathbb{R}^4 . Compute $\int_S \omega$ where $\omega = (w + w^2)dx \wedge dy \wedge dz$.
- 7. Does the equation $x^2 = y^3$ define a smooth submanifold in \mathbb{R}^3 ? Prove your claim.