Math 505a 2012 Fall Qualifying Exam

1. In the Polya Urn model, $w \geq 1$ white balls and $b \geq 1$ black balls are placed in an urn at time 0 , and at times $1,2, \ldots$ a ball is chosen uniformly from the urn independent of the past, and replaced back into the urn with one additional ball of the same color.
a. A vector $\left(X_{1}, \ldots, X_{n}\right)$ of random variables is said to be exchangeable

$$
\left(X_{1}, \ldots, X_{n}\right)={ }_{d}\left(X_{\pi(1)}, \ldots, X_{\pi(n)}\right) \quad \text { for all permutations } \pi
$$

where $={ }_{d}$ denotes equality in distribution. If X_{i} is the indicator that a white ball is drawn from the urn at time i, prove that $\left(X_{1}, \ldots, X_{n}\right)$ is exchangeable.
b. Find the mean and variance of $S_{n}=X_{1}+\cdots+X_{n}$, the total number of white balls added to the urn up to time n.
2. With a and b positive numbers, a needle of length $l \in(0, \min (a, b)]$ is dropped randomly on a rectangular grid consisting of an infinite number of parallel lines distance a apart, and, perpendicular to these, an infinite number of parallel lines distance b apart. Let A and B, respectively, be the events that the needle intersects the group of lines at distance a and b apart.
a. Show $P(A)=\frac{2 l}{a \pi}$ and $P(B)=\frac{2 l}{b \pi}$. Hint: The angle θ giving the orientation of the needle might be taken as uniform from $[0,2 \pi)$, but by symmetry, one may assume that the angle is uniformly taken from $[0, \pi / 2)$.
b. Determine $P(A \cap B)$ and verify that A and B are strictly negatively correlated, that is, that $P(A \cap B)<P(A) P(B)$.
3. A total of k boys and $n-k$ girls sit around a circular table, with all n ! arrangements equally likely. Compute the mean and variance of the number Y of pairs of boy/girl neighbors. Note: In the circular arrangement GBGGBB, since the first G and last B are neighbors, $Y=4$.

