Numerical Analysis Screening Exam, Fall 2012

Direct Methods for Linear Equations.

a. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite (SPD) matrix. There exists a nonsingular lower triangle matrix L satisfying $A=L \cdot L^{t}$. Is this factorization unique? If not, propose a condition on L to make the factorization unique.
b. Compute the above factorization for

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 13 & 8 \\
1 & 8 & 14
\end{array}\right)
$$

Iterative Methods for Linear Equations.

Consider the iterative method:

$$
N x_{k+1}=P x_{k}+b, k=0,1, \cdots,
$$

where N, P are $n \times n$ matrices with $\operatorname{det} N \neq 0$; and x_{0}, b are arbitraray $n-\operatorname{dim}$ vectors. Then the above iterates satisfy the system of equations

$$
\begin{equation*}
x_{k+1}=M x_{k}+N^{-1} b, k=0,1, \cdots \tag{1}
\end{equation*}
$$

where $M=N^{-1} P$. Now define $N_{\alpha}=(1+\alpha) N, P_{\alpha}=P+\alpha N$ for some real $\alpha \neq-1$ and consider the related iterative method

$$
\begin{equation*}
x_{k+1}=M_{\alpha} x_{k}+N_{\alpha}^{-1} b, \quad k=0,1, \cdots, \tag{2}
\end{equation*}
$$

where $M_{\alpha}=N_{\alpha}^{-1} P_{\alpha}$.
a. Let the eigenvalues of M be denoted by: $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Show that the eigenvalues $\mu_{\alpha, k}$ of M_{α} are given by:

$$
\mu_{\alpha, k}=\frac{\lambda_{k}+\alpha}{1+\alpha}, \quad k=1,2, \cdots, n
$$

b. Assume the eigenvalues of M are real and satisfy: $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}<1$. Show that the iterations in eq. (2) converge as $k \rightarrow \infty$ for any α such that $\alpha>\frac{1+\lambda_{1}}{2}>-1$.

Eigenvalue Problem.

a. Let λ be an eigenvalue of a $n \times n$ matrix A. Show that $f(\lambda)$ is an eigenvalue of $f(A)$ for any polynomial $f(x)=\sum_{k=0}^{n} a_{k} x^{k}$.
b. Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be a symmetric matrix satisfying:

$$
a_{1 i} \neq 0, \quad \sum_{j=1}^{n} a_{i j}=0, \quad a_{i i}=\sum_{j \neq i}\left|a_{i j}\right|, \quad i=1, \cdots, n
$$

Show all eigenvalues of A are non-negative and determine the dimension of eigenspace corresponding to the smallest eigenvalue of A .

Least Square Problem.

a. Let A be an $m \times n$ real matrix with the following singular value decomposition: $A=\left(\begin{array}{ll}U_{1} & U_{2}\end{array}\right)\left(\begin{array}{cc}\Sigma & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}V_{1}^{T} & V_{2}^{T}\end{array}\right)^{T}$, where $U=\left(\begin{array}{ll}U_{1} & U_{2}\end{array}\right)$ and $V=\left(\begin{array}{ll}V_{1} & V_{2}\end{array}\right)$ are orthogonal matrices, U_{1} and V_{1} have $r=\operatorname{rank}(A)$ columns, and Σ is invertible.
For any vector $b \in \mathbb{R}^{n}$, show that the minimum norm, least squares problem:

$$
\min _{x \in S}\|x\|_{2}, \quad S=\left\{x \in \mathbb{R}^{n} \mid\|A x-b\|_{2}=\min \right\}
$$

always has a unique solution, which can be written as $x=V_{1} \Sigma^{-1} U_{1}^{T} b$.
b. Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ and $b=\binom{1}{2}$. Using part a) above, find the minimum norm, least squares solution to the problem:

$$
\min _{x \in S}\|x\|_{2}, \quad S=\left\{x \in \mathbb{R}^{n} \mid\|A x-b\|_{2}=\min \right\}
$$

Hint: You can assume that the U in the SVD of A must be of the form $U=\left(\begin{array}{cc}a & a \\ a & -a\end{array}\right)$ for some real $a>0$.

