1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and $N-m$ are black; the balls are otherwise indistinguishable. Let X denote the number of red balls in the sample of size n. In what follows we treat N, n as known and m as unknown.
(a) Find $P_{m}(X=x)$.
(b) Show that

$$
\begin{equation*}
\widehat{m}=\min \{\lfloor X(N+1) / n\rfloor, N\} \tag{1}
\end{equation*}
$$

is an MLE of m.
(c) Define

$$
\begin{aligned}
& \underline{x}_{m, \alpha}=\max \left\{x \in \mathbb{Z}: P_{m}(X \leq x) \leq \alpha\right\} \\
& \bar{x}_{m, \alpha}=\min \left\{x \in \mathbb{Z}: P_{m}(X \leq x) \geq \alpha\right\} .
\end{aligned}
$$

Show that

$$
\begin{equation*}
\left\{m: \underline{x}_{m, \alpha / 2}<X \leq \bar{x}_{m, 1-\alpha / 2}\right\} \tag{2}
\end{equation*}
$$

is a $100(1-\alpha) \%$ confidence interval for m, possibly conservative. Hint: Invert a hypothesis test of $H_{0}: m=m_{0}$ vs. $H_{1}: m \neq m_{0}$, and note that one of the inequalities in (2) is strict.
2. (a) Let $S_{1} \sim \operatorname{Bin}\left(n_{1}, p\right)$ and $S_{2} \sim \operatorname{Bin}\left(n_{2}, p\right)$ be two independent binomial random variables, and let $S=S_{1}+S_{2}$. Identify the distribution of S_{1} conditional on $S=s$, and give its parameter values in terms of an urn model.
(b) Now let $S_{1} \sim \operatorname{Bin}\left(n_{1}, p_{1}\right)$ and $S_{2} \sim \operatorname{Bin}\left(n_{2}, p_{2}\right)$ be independent, and $S=S_{1}+S_{2}$ as above. Fisher's Exact Test of $H_{0}: p_{1}=p_{2}$ versus $H_{1}: p_{1}>p_{2}$ rejects H_{0} when S_{1} is large.
i. Show that, under H_{0}, S is a sufficient statistic.
ii. Write down an expression for the p-value of Fisher's Exact Test, conditional on $S=s$, in terms of the density $f\left(s_{1} \mid s\right)$ of the distribution in part 2 a .

