- 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote the number of red balls in the sample of size n. In what follows we treat N, n as known and m as unknown.
 - (a) Find $P_m(X = x)$.
 - (b) Show that

$$\widehat{m} = \min\{\lfloor X(N+1)/n \rfloor, N\}.$$
(1)

is an MLE of m.

(c) Define

$$\underline{x}_{m,\alpha} = \max\{x \in \mathbb{Z} : P_m(X \le x) \le \alpha\}$$
$$\overline{x}_{m,\alpha} = \min\{x \in \mathbb{Z} : P_m(X \le x) \ge \alpha\}.$$

Show that

$$\{m: \underline{x}_{m,\alpha/2} < X \le \overline{x}_{m,1-\alpha/2}\}\tag{2}$$

is a $100(1 - \alpha)\%$ confidence interval for *m*, possibly conservative. *Hint:* Invert a hypothesis test of $H_0: m = m_0$ vs. $H_1: m \neq m_0$, and note that one of the inequalities in (2) is strict.

- 2. (a) Let $S_1 \sim Bin(n_1, p)$ and $S_2 \sim Bin(n_2, p)$ be two independent binomial random variables, and let $S = S_1 + S_2$. Identify the distribution of S_1 conditional on S = s, and give its parameter values in terms of an urn model.
 - (b) Now let $S_1 \sim Bin(n_1, p_1)$ and $S_2 \sim Bin(n_2, p_2)$ be independent, and $S = S_1 + S_2$ as above. Fisher's Exact Test of $H_0: p_1 = p_2$ versus $H_1: p_1 > p_2$ rejects H_0 when S_1 is large.
 - i. Show that, under H_0 , S is a sufficient statistic.
 - ii. Write down an expression for the *p*-value of Fisher's Exact Test, conditional on S = s, in terms of the density $f(s_1|s)$ of the distribution in part 2a.