Geometry/Topology Qualifying Exam

Spring 2012

Solve all **SEVEN** problems. Partial credit will be given to partial solutions.

- 1. (10 pts) Prove that a compact smooth manifold of dimension n cannot be immersed in \mathbb{R}^n .
- 2. (10 pts) Let $\Sigma_{1,1}$ be the compact oriented surface with boundary, obtained from $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ with coordinates (x, y) by removing a small disk $\{(x \frac{1}{2})^2 + (y \frac{1}{2})^2 = \frac{1}{100}\}$.
 - (a) Compute the homology of $\Sigma_{1,1}$.
 - (b) Let Σ_2 denote a closed oriented surface of genus 2. Use your answer from (a) to compute the homology of Σ_2 .
- 3. (10 pts) Let S be an oriented embedded surface in \mathbb{R}^3 and ω be an area form on S which satisfies $\omega(p)(e_1, e_2) = 1$ for all $p \in S$ and any orthonormal basis (e_1, e_2) of T_pS with respect to the standard Euclidean metric on \mathbb{R}^3 . If (n_1, n_2, n_3) is the unit normal vector field of S, then prove that

$$\omega = n_1 dy \wedge dz - n_2 dx \wedge dz + n_3 dx \wedge dy,$$

where (x, y, z) are the standard Euclidean coordinates on \mathbb{R}^3 .

- 4. (10 pts) Consider the space X = M₁∪M₂, where M₁ and M₂ are Möbius bands and M₁∩M₂ = ∂M₁ = ∂M₂. Here a *Möbius band* is the quotient space ([-1, 1]×[-1, 1])/((1, y) ~ (-1, -y)). (a) Determine the fundamental group of X.
 - (b) Is X homotopy equivalent to a compact orientable surface of genus g for some g?
- 5. (10 pts) Determine all the connected covering spaces of $\mathbb{RP}^{14} \vee \mathbb{RP}^{15}$.
- 6. (10 pts) Let $f : M \to N$ be a smooth map between smooth manifolds, X and Y be smooth vector fields on M and N, respectively, and suppose that $f_*X = Y$ (i.e., $f_*(X(x)) = Y(f(x))$ for all $x \in M$). Then prove that $f^*(\mathcal{L}_Y \omega) = \mathcal{L}_X(f^*\omega)$, where ω is a 1-form on N. Here \mathcal{L} denotes the Lie derivative.
- 7. (10 pts) Consider the linearly independent vector fields on $\mathbb{R}^4 \{0\}$ given by:

$$X(x_1, x_2, x_3, x_4) = x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2} + x_3 \frac{\partial}{\partial x_3} + x_4 \frac{\partial}{\partial x_4}$$
$$Y(x_1, x_2, x_3, x_4) = -x_2 \frac{\partial}{\partial x_1} + x_1 \frac{\partial}{\partial x_2} - x_4 \frac{\partial}{\partial x_3} + x_3 \frac{\partial}{\partial x_4}.$$

Is the rank 2 distribution orthogonal to these two vector fields integrable? Here orthogonality is measured with respect to the standard Euclidean metric on \mathbb{R}^4 .