Spring 2012 Real Analysis Exam

Answer all four questions. Partial credit will be awarded, but in the event that you cannot fully solve a problem state clearly what it is you have done and what you have left out. Unacknowledged omissions, incorrect reasoning and guesswork will lower your score. Start each problem on a fresh sheet of paper, and write on only one side of the paper.

1. Let f and g be real integrable functions on a σ -finite measure space (X, \mathcal{M}, μ) , and for $t \in \mathbb{R}$ let

$$F_t = \{x \in E : f(x) > t\}$$
 and $G_t = \{x \in E : g(x) > t\}.$

Show that

$$\int_X |f - g| d\mu = \int_{-\infty}^{\infty} \mu \left((F_t \backslash G_t) \cup (G_t \backslash F_t) \right) dt.$$

2. Show that

$$\int_{\pi}^{\infty} \frac{dx}{x^2 (\sin^2 x)^{1/3}}$$

is finite.

3. A collection of functions $\{f_{\alpha}\}_{\alpha \in \mathcal{A}} \subset L^{1}(\mu)$ on the measure space (X, \mathcal{M}, μ) is said to be *uniformly integrable* if

$$\lim_{M \to \infty} \sup_{\alpha \in \mathcal{A}} \int_{\{x: |f_{\alpha}(x)| > M\}} |f_{\alpha}| = 0.$$

a. Prove that if $f \in L^1$ then $\{f\}$ is uniformly integrable.

b. Prove that if $\{f_{\alpha}\}_{\alpha \in \mathcal{A}}$ and $\{f_{\beta}\}_{\beta \in \mathcal{B}}$ are two collections of uniformly integrable functions then $\{f_{\gamma}\}_{\gamma \in \mathcal{A} \cup \mathcal{B}}$ is uniformly integrable.

c. Show that if $\mu(X) < \infty$ and $\{f_{\alpha}\}_{\alpha \in \mathcal{A}} \subset L^{1}(\mu)$ is uniformly integrable then

$$\sup_{\alpha \in \mathcal{A}} \int |f| d\mu < \infty$$

Give an example to show that the conclusion fails without the condition $\mu(X) < \infty$.

d. Again let $\mu(X) < \infty$ and suppose $\{f_n\}_{n=0}^{\infty} \subset L^1(\mu)$ such that $f_n \to f_0$ a.e. and $\int |f_n| d\mu \to \int |f_0| d\mu$. Prove that $\{f_n\}_{n=0}^{\infty}$ is uniformly integrable. Hint: Consider some ϕ_M , a continuous, bounded function on $[0, \infty)$, equal to 0 on $[M, \infty)$, for which $|t| \mathbf{1}\{|t| > M\} \leq |t| - \phi_M(|t|)$.

- 4. Let \mathbb{M} be the collection of all finite measures on the measure space (X, \mathcal{M}) .
 - **a**. Show that

$$d(\nu, \lambda) = 2 \sup_{E \in \mathcal{M}} |\nu(E) - \lambda(E)|$$

defines a metric on $\mathbb{M}.$

b. For any $\mu \in \mathbb{M}$ that dominates measures ν and λ in \mathbb{M} with $\nu(X) = \lambda(X) = 1$, let

$$p = \frac{d\nu}{d\mu}$$
 and $q = \frac{d\lambda}{d\mu}$.

Prove

$$d(\nu, \lambda) = \int |p(x) - q(x)| \, d\mu = 2\left(1 - \int (\min\{p(x), q(x)\}) \, d\mu\right).$$

Hint: notice that $\mu(E) - \lambda(E) = \lambda(E^c) - \nu(E^c)$.