Topics for the Graduate Exam in Real Analysis

Measures: Sigma-rings, sigma fields. Set functions and measures. Outer measure. Construction of measures on Rⁿ. Variation of signed measures. Hahn decomposition theorem. Absolute continuity. Mutually singular measures. Product measures. Regular measures. Measurable functions. Signed and complex measures.

Integration: Definition and basic properties of integrable functions over an abstract measure space. The Riemann integral and its relation to the Lebesgue integral. Lebesgue's dominated convergence theorem and related results. Radon-Nikodym theorem. Fubini's theorem. Convolution. The n-dimensional Lebesgue integral. Polar coordinates.

Convergence: Almost everywhere convergence, uniform convergence, almost uniform convergence, convergence in measure and in mean. Egoroff's theorem. Lusin's theorem.

Differentiation: Lebesgue differentiation theorem. Maximal function. Vitali covering lemma. Bounded variation. Absolutely continuous functions. Fundamental theorem of calculus.

Metric spaces: Topological properties, convergence, compactness, completeness, continuity of functions.

References:

G.B. Folland, Real Analysis: Modern techniques and their applicationsP. Halmos, Measure TheoryW. Rudin, Real and Complex Analysis