DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Fall 2017

Work three of the following four problems. Show your work.

1. (a) State the Poincaré-Bendixon theorem.
(b) Show that the system

$$
\begin{aligned}
& \dot{x}=y \\
& \dot{y}=-x+y\left(4-x^{2}-4 y^{2}\right) .
\end{aligned}
$$

has a periodic orbit.
2. Let $A \in \mathcal{M}_{n}(\mathbb{R}), B \in \mathcal{C}\left(\mathbb{R}^{+} ; M_{n}(\mathbb{R})\right)$, and $f \in \mathcal{C}\left(\mathbb{R}^{+} ; \mathbb{R}^{n}\right)$. Suppose that the function $t \mapsto e^{t A}$ is bounded on \mathbb{R}^{+}, and

$$
\int_{0}^{+\infty}\|B(s)\| d s<+\infty, \quad \int_{0}^{+\infty}\|f(s)\| d s<+\infty
$$

(a) Prove that all solutions of the system

$$
x^{\prime}=(A+B(t)) x+f(t)
$$

are bounded.
(b) Prove that all solutions of the system

$$
\left.x^{\prime}=B(t)\right) x
$$

have a finite limit as $t \rightarrow+\infty$.
(c) Suppose now that the function $t \mapsto e^{t A}$ is bounded on \mathbb{R}. Prove that if $x(\cdot)$ is a solution of the system $x^{\prime}=(A+B(t)) x$, then the function $y(t)=e^{-t A} x(t)$ has a finite limit when $t \rightarrow+\infty$.
(d) (Application:) (Extra Credit) Let $q: \mathbb{R}^{+} \mapsto \mathbb{R}$ be a continuous function such that

$$
\int_{0}^{+\infty}|q(t)| d t<+\infty
$$

and x a solution of

$$
x^{\prime \prime}+(1+q(t)) x=0 .
$$

Prove the existence of two constants $\alpha, \beta \in \mathbb{R}$ such that

$$
\lim _{t \rightarrow+\infty}[x(t)-\alpha \cos t-\beta \sin t]=0
$$

3. Consider the second order ordinary differential equation

$$
x^{\prime \prime}+p(t) x^{\prime}+a x=0
$$

where $a>0$ and $\int_{0}^{t} p(s) d s \rightarrow \infty$ an $t \rightarrow \infty$. Suppose $\phi(t)$ and $\psi(t)$ form a fundamental set of solutions, i.e.

$$
X(t)=\left(\begin{array}{cc}
\phi(t) & \psi(t) \\
\phi^{\prime}(t) & \psi^{\prime}(t)
\end{array}\right)
$$

is non-singular. Prove $\operatorname{det} X(t) \rightarrow 0$ as $t \rightarrow \infty$.
4. Consider the scalar differential equation

$$
\ddot{x}+f(t) x=0,
$$

where $f(t+T)=f(t)$ is periodic with period T.
(a) Define the monodromy matrix, C, for the T-periodic system and show that $\operatorname{det} C=1$.
(b) Define the Floquet multipliers, denoted μ_{1}, μ_{2}, associated with C and show they satisfy

$$
\mu_{i}^{2}-\tau \mu_{i}+1=0, \quad i=1,2
$$

where $\tau:=\operatorname{tr} C$.
(c) Show that if $|\tau|<2$, then all solutions $x(t)$ remain bounded as $t \rightarrow+\infty$.

DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Fall 2018

Each problem is worth 20 points. There are 4 problems.

1. Consider the system of ODEs,

$$
\begin{align*}
x^{\prime} & =\mu x-y-\left(x^{2}+y^{2}\right) x \tag{1}\\
y^{\prime} & =x+\mu y-\left(x^{2}+y^{2}\right) y
\end{align*}
$$

where $\mu \in(-1,1)$.
(a) Show that trajectories never leave the box $[-A, A] \times[-B, B]$ for suitably chosen A and B.
(b) Show that for $\mu>0$ there exists a non-trivial closed trajectory Γ in the plane.
(c) Describe the bifurcation that takes place as μ increases through $\mu=0$.
(d) Compute the approximate period of the closed cycle for $\mu=0.001$.
(e) Show that Γ in part (b) is locally exponentially attracting, i.e. nearby trajectories decay exponentially toward Γ.
2. Consider the system

$$
\begin{aligned}
x^{\prime}(t) & =-y(t) z(t) \\
y^{\prime}(t) & =x(t) z(t) \\
3 z^{\prime}(t) & =-x(t) y(t) .
\end{aligned}
$$

(a) Show that the quantity $x^{2}(t)+4 y^{2}(t)+9 z^{2}(t)$ is conserved, i.e constant along orbits.
(b) Find all stationary points and determine their type and stability.
3. For the system

$$
\begin{aligned}
x^{\prime} & =3\left(\sin ^{2} t\right) x-3 y \\
y^{\prime} & =-\left(\sin ^{4} t\right) x-y
\end{aligned}
$$

(a) Show there is at least one solution $\psi(t)=(x(t), y(t))$ that satisfies $|\psi(t)| \rightarrow \infty$ as $t \rightarrow \infty$,
(b) Show there can be no solution $\phi(t)=(x(t), y(t))$ that satisfies $x\left(t_{0}\right)=x^{\prime}\left(t_{0}\right)=0$ for some $t_{0} \in \mathbb{R}$ except the identically zero solution.
4. For the system of

$$
\begin{aligned}
x^{\prime} & =2 x+5 y+5 x^{2}-4 y^{2} \\
y^{\prime} & =3 x+y-6 x^{2}+5 y^{2},
\end{aligned}
$$

(a) Show there is at least one non-identically zero solution $\psi(t)=(x(t), y(t))$ that satisfies $|\psi(t)| \rightarrow 0$.
(b) Is the origin asymptotically stable?

