Work three of the following four problems. Show your work.

1. (a) State the Poincaré-Bendixon theorem.
 (b) Show that the system
 \[\begin{align*}
 \dot{x} &= y \\
 \dot{y} &= -x + y(4 - x^2 - 4y^2).
 \end{align*} \]
 has a periodic orbit.

2. Let \(A \in \mathcal{M}_n(\mathbb{R}) \), \(B \in \mathcal{C}(\mathbb{R}^+; \mathcal{M}_n(\mathbb{R})) \), and \(f \in \mathcal{C}(\mathbb{R}^+; \mathbb{R}^n) \). Suppose that the function \(t \mapsto e^{tA} \) is bounded on \(\mathbb{R}^+ \), and
 \[\int_0^{+\infty} \|B(s)\| \, ds < +\infty, \quad \int_0^{+\infty} \|f(s)\| \, ds < +\infty. \]
 (a) Prove that all solutions of the system
 \[x' = (A + B(t))x + f(t) \]
 are bounded.
 (b) Prove that all solutions of the system
 \[x' = B(t)x \]
 have a finite limit as \(t \to +\infty \).
 (c) Suppose now that the function \(t \mapsto e^{tA} \) is bounded on \(\mathbb{R} \). Prove that if \(x(\cdot) \) is a solution of the system \(x' = (A + B(t))x \), then the function \(y(t) = e^{-tA}x(t) \) has a finite limit when \(t \to +\infty \).
 (d) (Application:) (Extra Credit) Let \(q : \mathbb{R}^+ \to \mathbb{R} \) be a continuous function such that
 \[\int_0^{+\infty} |q(t)| \, dt < +\infty \]
 and \(x \) a solution of
 \[x'' + (1 + q(t))x = 0. \]
 Prove the existence of two constants \(\alpha, \beta \in \mathbb{R} \) such that
 \[\lim_{t \to +\infty} [x(t) - \alpha \cos t - \beta \sin t] = 0. \]

3. Consider the second order ordinary differential equation
 \[x'' + p(t)x' + ax = 0 \]
 where \(a > 0 \) and \(\int_0^t p(s) \, ds \to \infty \) an \(t \to \infty \). Suppose \(\phi(t) \) and \(\psi(t) \) form a fundamental set of solutions, i.e.
 \[X(t) = \begin{pmatrix} \phi(t) & \psi(t) \\ \phi'(t) & \psi'(t) \end{pmatrix} \]
 is non-singular. Prove \(\det X(t) \to 0 \) as \(t \to \infty \).
4. Consider the scalar differential equation

\[\ddot{x} + f(t)x = 0, \]

where \(f(t + T) = f(t) \) is periodic with period \(T \).

(a) Define the monodromy matrix, \(C \), for the \(T \)-periodic system and show that \(\det C = 1 \).

(b) Define the Floquet multipliers, denoted \(\mu_1, \mu_2 \), associated with \(C \) and show they satisfy

\[\mu_i^2 - \tau \mu_i + 1 = 0, \quad i = 1, 2, \]

where \(\tau := \text{tr} C \).

(c) Show that if \(|\tau| < 2 \), then all solutions \(x(t) \) remain bounded as \(t \to +\infty \).
DIFFERENTIAL EQUATIONS QUALIFYING EXAM–Fall 2018

Each problem is worth 20 points. There are 4 problems.

1. Consider the system of ODEs,

\[
\begin{align*}
x' &= \mu x - y - (x^2 + y^2)x, \\
y' &= x + \mu y - (x^2 + y^2)y,
\end{align*}
\]

where \(\mu \in (-1, 1) \).

(a) Show that trajectories never leave the box \([-A, A] \times [-B, B]\) for suitably chosen \(A\) and \(B\).

(b) Show that for \(\mu > 0 \) there exists a non-trivial closed trajectory \(\Gamma \) in the plane.

(c) Describe the bifurcation that takes place as \(\mu \) increases through \(\mu = 0 \).

(d) Compute the approximate period of the closed cycle for \(\mu = 0.001 \).

(e) Show that \(\Gamma \) in part (b) is locally exponentially attracting, i.e. nearby trajectories decay exponentially toward \(\Gamma \).

2. Consider the system

\[
\begin{align*}
x'(t) &= -y(t)z(t) \\
y'(t) &= x(t)z(t) \\
z'(t) &= -x(t)y(t).
\end{align*}
\]

(a) Show that the quantity \(x^2(t) + 4y^2(t) + 9z^2(t) \) is conserved, i.e constant along orbits.

(b) Find all stationary points and determine their type and stability.

3. For the system

\[
\begin{align*}
x' &= 3(\sin^2 t)x - 3y \\
y' &= -(\sin^4 t)x - y,
\end{align*}
\]

(a) Show there is at least one solution \(\psi(t) = (x(t), y(t)) \) that satisfies \(|\psi(t)| \rightarrow \infty \) as \(t \rightarrow \infty \).

(b) Show there can be no solution \(\phi(t) = (x(t), y(t)) \) that satisfies \(x(t_0) = x'(t_0) = 0 \) for some \(t_0 \in \mathbb{R} \) except the identically zero solution.

4. For the system of

\[
\begin{align*}
x' &= 2x + 5y + 5x^2 - 4y^2 \\
y' &= 3x + y - 6x^2 + 5y^2,
\end{align*}
\]

(a) Show there is at least one non-identically zero solution \(\psi(t) = (x(t), y(t)) \) that satisfies \(|\psi(t)| \rightarrow 0 \).

(b) Is the origin asymptotically stable?