PARTIAL DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Fall 2017

Choose THREE out of four problems: only three will be graded. Partial credit will be awarded, but in the event that you can not fully solve a problem you should state clearly what it is you have done and what you have left out. Start each problem on a fresh sheet of paper and write on only one side of the paper.

1. Consider the Burgers' equation

$$
\begin{aligned}
& u_{t}+u u_{x}=0, \quad x \in \mathbb{R}, t>0, \\
& u(x, 0)=g(x), \quad x \in \mathbb{R} .
\end{aligned}
$$

where $g(x)$ is a given piecewise continuous function.
(a) (5pts) Show that the characteristics are straight lines.
(b) (2.5pts) Give an example of $g(x)$ so that the characteristics do not cover the entire (x, t) space.
(c) (2.5pts) Give an example of $g(x)$ so that the characteristics intersect.
2. Let $U \subset \mathbb{R}^{n}$ be an open set.
(a) (5pts) Let $u \in C^{2}(U)$. Show that for any Ball $\bar{B}\left(x_{0}, r\right) \subset U$ it holds

$$
\frac{d}{d r} f_{\partial B(0,1)} u\left(x_{0}+r z\right) d \mathcal{S}(z)=\frac{r}{n} f_{B(0,1)}(\Delta u)\left(x_{0}+r z\right) d z
$$

Here we have used the notation $f_{A} f=\frac{1}{|A|} \int_{A} f$.
(b) (3pts) Let $u \in C^{2}(U)$ be such that for any ball $\bar{B}\left(x_{0}, r\right) \subset U$ it holds

$$
u\left(x_{0}\right)=f_{\partial B\left(x_{0}, r\right)} u d \mathcal{S}
$$

Show that then $\Delta u=0$ in U.
(c) (2pts) Does the implication of part (b) still hold if you just assume $u \in C(U)$? Briefly explain your answer.
3. Let U be the unit ball in \mathbb{R}^{n}.
(a) (5pts) For $u(x)=|x|^{-a}$ for $x \in U$, determine the values of a, n, p for which u belongs to the Sobolev space $W^{1, p}(U)$.
(b) (5pts) Let $n \geq 2$. If $u(x)=\ln \ln \left(1+\frac{1}{|x|}\right)$ for $x \in U$, show that $u \in W^{1, n}(U)$ but not in $L^{\infty}(U)$.
4. (a) (5pts) Let $U \subset \mathbb{R}^{n}$ be a bounded open set, let $T>0$ be fixed and define $U_{T}=$ $U \times(0, T)$. Assume $u \in C_{1}^{2}\left(\overline{U_{T}}\right)$ solves the following initial boundary value problem

$$
\begin{array}{rll}
u_{t}-\Delta u=f & \text { in } & U_{T}, \\
\frac{\partial u}{\partial \nu}+u=h & \text { on } & \partial U \times(0, T), \\
u=g & \text { on } \quad U \times\{t=0\},
\end{array}
$$

where f, g, and h are given smooth functions, and ν is the outward pointing unit normal field of ∂U. Prove that there exists at most one such solution.
(b) (5pts) Let $U \subset \mathbb{R}^{2}$ be a bounded open set and let $a>0, b, c \in \mathbb{R}$ be given constants. Show that any solution $u \in C^{2}(\bar{U})$ of

$$
\Delta u-a u+b \partial_{x} u+c \partial_{y} u=0 \quad \text { in } \quad U,
$$

cannot attain a positive maximum or negative minimum inside U.

PARTIAL DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Spring 2018

Partial credit will be awarded, but in the event that you can not fully solve a problem you should state clearly what it is you have done and what you have left out. Start each problem on a fresh sheet of paper and write on only one side of the paper.

1. Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded with normal vector field ν and let $u_{0} \in C_{b}(\Omega)$ with $u_{0} \geq 0$ be non-trivial. Show that the problem

$$
\begin{aligned}
\partial_{t} u-\Delta u & =u^{2} \text { in } \Omega \times(0, T), \\
\partial_{\nu} u & =0 \text { on } \partial \Omega \times(0, T), \\
u(x, 0) & =u_{0}(x) \text { for } x \in \Omega,
\end{aligned}
$$

exists for at most a finite time T.
Hint: Show that the mean $m(t)=\frac{1}{|\Omega|} \int_{\Omega} u(t, x) d x$ satisfies $\partial_{t} m(t) \geq m(t)^{2}$.
2. Let $\Omega \subset \mathbb{R}^{n}$ be open, connected and bounded and let $R>0$ such that $\Omega \subset B_{R}(0)$.
(a) Let $v \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ with $\Delta v=0$ in Ω. Show that

$$
\max _{x \in \bar{\Omega}} v(x)=\max _{x \in \partial \Omega} v(x)
$$

(b) Let $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ be a solution of

$$
\begin{aligned}
-\Delta u & =1 \text { in } \Omega \\
u & =0 \text { on } \partial \Omega .
\end{aligned}
$$

Show that

$$
0 \leq u(x) \leq \frac{R^{2}-|x|^{2}}{2 n}
$$

for all $x \in \bar{\Omega}$.
3. Let u be a classical solution of the following initial boundary value problem:

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad \text { in }(a, b) \times(0, T) \\
& u(a, t)=u(b, t)=0 \\
& u(x, 0)=u_{0}(x)
\end{aligned}
$$

where u_{0} is a continuous function.
(a) Show that the solutions are unique.
(b) Show that there exists a constant $\alpha>0$ such that

$$
\|u(\cdot, t)\|_{L^{2}}^{2} \leq e^{-\alpha t}\left\|u_{0}\right\|_{L^{2}}^{2} .
$$

Partial credit will be awarded, but in the event that you can not fully solve a problem you should state clearly what it is you have done and what you have left out. Start each problem on a fresh sheet of paper and write on only one side of the paper.

1. Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded and let $g_{j} \in C(\partial \Omega)$ converge uniformly to $g \in C(\partial \Omega)$ (recall that this means that $\left.\lim _{j \rightarrow \infty} \sup _{x \in \partial \Omega}\left|g_{j}(x)-g(x)\right|\right)$. Let $u_{j} \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be the solutions of

$$
\begin{aligned}
\Delta u_{j} & =0 \text { in } \Omega, \\
u_{j} & =g_{j} \text { on } \partial \Omega .
\end{aligned}
$$

Show that u_{j} converges uniformly to a function $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ and that u solves

$$
\begin{aligned}
\Delta u & =0 \text { in } \Omega, \\
u & =g \text { on } \partial \Omega .
\end{aligned}
$$

2. Let $u_{0} \in C^{2}\left(B_{1}(0)\right), u_{1} \in C^{1}\left(B_{1}(0)\right), f \in C\left((0, T) \times B^{1}(0)\right)$. Show that the problem

$$
\begin{aligned}
\partial_{t t} u-\Delta u+u & =f \text { in }(0, T) \times B^{1}(0), \\
u(0, x) & =u_{0}(x), \\
\partial_{t} u(0, x) & =u_{1}(x), \\
u(t, x) & =0 \text { on }(0, T) \times \partial B_{1}(0),
\end{aligned}
$$

has at most one solution $u \in C^{2}\left([0, T] \times \overline{B_{1}(0)}\right)$.
3. Consider the equation

$$
\partial_{t} u+u \partial_{x} u=0
$$

on $(0, T) \times \mathbb{R}$. Show that a classical solution with initial data $u(0, x)=\frac{\pi}{2}-\arctan (x)$ can exist at most for a finite time.

