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Motivation

Motivation: What are the factors?

Statistical Factor Analysis

Factor models are widely used in big data settings
Summarize information and reduce data dimensionality
Problem: Which factors should be used?

Statistical (latent) factors perform well

Factors estimated from Principle Component Analysis (PCA)
Weighted averages of all cross-section units
Problem: Hard to interpret

Goals of this paper:

Create interpretable sparse proximate factors

Shrink most small cross section units’ weights to zero to get
proximate factors

⇒ More interpretable
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Motivation

Contribution of this paper

Contribution

This Paper: Estimation of interpretable proximate factors

Key elements of estimator:

1 Statistical factors instead of pre-specified (and potentially
miss-specified) factors

2 Uses information from large panel data sets: Many cross
section units with many time observations

3 Proximate factors approximate latent factors very well with a
few cross section units without sparse structure in population
loadings

4 Only 5-10% of the cross-sectional observations with the largest
exposure are needed for proximate factors
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Motivation

Contribution

Theoretical Results

Asymptotic probabilistic lower bound for generalized correlations of
proximate factors with population factors

Guidance on how to construct proximate factors

Empirical Results

Very good approximation to population factors with 5-10%
cross-section units, measured by generalized correlation and variance
explained

Interpret statistical latent factors for

370 single-sorted anomaly portfolios
128 macroeconomic variables
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Motivation

Literature (partial list)

Large-dimensional factor models with PCA

Bai and Ng (2002): Number of factors
Bai (2003): Distribution theory
Fan et al. (2013): Sparse matrices in factor modeling
Fan et al. (2016): Projected PCA for time-varying loadings
Pelger (2017), Äıt-Sahalia and Xiu (2015): High-frequency
Kelly, Pruitt and Su (2017): IPCA

Factor models with penalty term

Bai and Ng (2017): Robust PCA with ridge shrinkage
Lettau and Pelger (2018): Risk-Premium PCA with pricing
penalty
Zhou et al. (2006): Sparse PCA (low dimension)
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Illustration

Single-sorted Portfolios

Portfolio Data

Monthly return data from 07/1963 to 12/2016 (T = 638) for
N = 370 portfolios

Kozak, Nagel and Santosh (2017) data: 370 decile portfolios sorted
according to 37 anomaly characteristics, such as momentum,
volatility, turnover, size and volume.

Estimate a 5-factor model similar as Lettau and Pelger (2018)
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Illustration

Single-sorted Portfolios: Fourth Factor

Hard to interpret...

Figure: Financial single-sorted portfolios: Portfolio weights of 4th PCA
factor.

6



Intro Illustration Model Empirical Results Conclusion Appendix

Illustration

Single-sorted Portfolios: Fourth Factor

The fourth factor is a long-short momentum factor

⇒ Long-short extreme portfolios sorted by Industry Mom. Reversals,
Momentum (6m), Momentum (12m), Value-Momentum,
Value-Momentum-Prof. characteristics

Figure: Financial single-sorted portfolios: Portfolio weights of 4th
proximate factor. The sparse loading has 30 nonzero entries.
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Model

The Model

Approximate Factor Model

Observe panel data of N cross-section units over T time periods:

Xi,t = Λi
1×K

>︸ ︷︷ ︸
loadings

Ft
K×1︸︷︷︸
factors

+ ei,t︸︷︷︸
idiosyncratic

i = 1, ...,N t = 1, ...,T

Matrix notation

X︸︷︷︸
N×T

= Λ︸︷︷︸
N×K

F>︸︷︷︸
K×T

+ e︸︷︷︸
N×T

N assets (large)
T time-series observation (large)
K systematic factors (fixed)

F , Λ and e are unknown
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Model

The Model

Approximate Factor Model

Systematic and non-systematic risk (F and e uncorrelated):

Var(X ) = ΛVar(F )Λ>︸ ︷︷ ︸
systematic

+ Var(e)︸ ︷︷ ︸
non−systematic

⇒ Systematic factors should explain a large portion of the
variance

⇒ Idiosyncratic risk can be weakly correlated

Estimation: PCA (Principal Component Analysis)

Apply PCA to the sample covariance matrix: 1
T XX> − X̄ X̄> with

X̄ = sample mean of asset excess returns

Eigenvectors of largest eigenvalues estimate loadings Λ̂

F̂ estimator for factors: F̂ = X Λ̂>(Λ̂>Λ̂)−1 = 1
NX
>Λ̂
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Model

Method to Construct Sparse Proximate Factors

Proximate Factors

Estimate loadings Λ̂ by applying PCA to 1
T XX> − X̄ X̄>

Sparse loadings Λ̃ are obtained from

Select finitely many m loadings with largest absolute value
from Λ̂k for all k
Shrink estimated loadings Λ̂ to 0 except for m largest values
Divide by column norms, i.e. λ̃>k λ̃k = 1

Proximate factors F̃ = XT Λ̃(Λ̃T Λ̃)−1
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Asymptotic results

Asymptotic results

Proximate factors F̃ are in general not consistent.

Consider one-factor model

F̃ = XT Λ̃ = FΛT Λ̃ + eT Λ̃

Idiosyncratic component not diversified away

Assume ei,t
iid∼ (0, σ2

e·,t ), then each element in eT Λ̃ has

Var

(
m∑
i=1

λ̃1,1i e1i ,t

)
=

m∑
i=1

λ̃2
1,1i
σ2
e·,t = σ2

e·,l 6→ 0
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Asymptotic results

Closeness between Proximate Factors and Latent Factors

Closeness measure

For 1-factor model: Correlation between F̃ and F .

Problem for multiple factors: Factors are only identified up to
invertible linear transformations ⇒ Need measure for closeness
between span of two vector spaces

For multi-factor model: The ”closeness” between F̃ and F is
measured by generalized correlation:

Total generalized correlation measure:

ρ = trace
(

(FTF/T )−1(FT F̃/T )(F̃T F̃/T )−1(F̃TF/T )
)

ρ = 0: F̃ and F are orthogonal
ρ = K : F̃ and F span the same space
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Intuition

Intuition: Why does picking largest elements in Λ̂ work?

Consider one factor and one nonzero element in Λ̃:
F = [f1t ] ∈ RT×1, Λ = [λ1,i ] ∈ RN×1

Λ̃ = [λ̃1,i ] is sparse. Assume nonzero element in λ̃1,i is
λ̃1,1 = 1, so Λ̃>Λ̃ = I .

F̃ = XT Λ̃ = FΛT Λ̃ + eT Λ̃

= f1λ1,1 + e1

Assume
f1,t ∼ (0, σ2

f ), e1,t
iid∼ (0, σ2

e )

f T1 f1
T
→ σ2

f ,
eT1 e1

T
→ σ2

e

Define signal-to-noise ratio s = σf
σe
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Intuition

Intuition: Why pick the largest elements in Λ̂?

ρ = tr
(

(FTF/T )−1(FT F̃/T )(F̃T F̃/T )−1(F̃TF/T )
)

=

(
f T1 (f1λ1,1 + e1)/T

(f T1 f1/T )1/2((f1λ1,1 + e1)T (f1λ1,1 + e1)/T )1/2

)2

→
λ2

1,1

λ2
1,1 + 1/s2

(Generalized) correlation increases in size of loading |λ1,1|.
(Generalized) correlation increases in signal-to-noise ratio s.

No sparsity in population loadings assumed!

⇒ We provide probabilistic lower bound for (generalized)
correlation ρ given a target correlation level ρ0:

P(ρ > ρ0)
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Intuition

Assumptions

Assumptions

Similar assumptions as in Bai and Ng (2002)

1 Factors: E ‖ft‖4 ≤ M <∞ and 1
T

∑T
t=1 ft f

T
t

P−→ ΣF for some K × K
positive definite matrix ΣF = diag(σ2

f1
, σ2

f2
, · · · , σ2

fr ).

2 Loadings: Random variables maxi ‖λj,i‖ = Op(1) and Λ>Λ/N → ΣΛ,
independent of factors and errors

3 Systematic factors: Eigenvalues of ΣΛΣF bounded away from 0 and ∞
4 Residuals: Weak Dependency

Bounded eigenvalues and sparsity of Σe

e weakly dependent with F
Light tails

⇒ Uniform convergence result for loadings ∀i , ∃H,

max
i≤N

∥∥∥λ̂(i) − Hλ(i)

∥∥∥ = Op

(
1√
N

+
N1/4

√
T

)
.
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One Factor Case

One factor case: Extreme value theory

Theorem 1: Distribution of correlation

Assume: K = 1 factor and there exists sequences of constants
{a1,N > 0} and {b1,N} such that

P((|λ1,(1)| − b1,N)/a1,N ≤ z)→ G1(z),

Then for N,T →∞

P (ρ ≥ ρ0) ≥ 1− G1,m(z) + op(1)

ρ0 =
σ2
f1

(a1,Nz + b1,N)2

1+h(m)
m σ2

e + σ2
f1

(a1,Nz + b1,N)2

G1 is the Generalized Extreme Value (GEV) distribution function,

G1 = exp

{
−
[

1 + ξ

(
z − µ
σ

)]−1/ξ
}
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One Factor Case

One factor case: Extreme value theory

A few examples for G1 and a1,N and b1,N for λ1,i :

1 G1 ∼ Gumbel distribution:

Standard normal distribution (λi ∼ N(0, 1)): a1,N = 1
Nφ(b1,N )

and b1,N = Φ−1(1− 1/N), where φ(·),Φ(·) are pdf and cdf of
standard normal.
Exponential distribution (λi ∼ exp(1)): a1,N = 1, b1,N = N

2 G1 ∼ Frechet distribution:

Fλ(x) = exp(−1/x): a1,N = N, b1,N = 0.

3 G1 ∼ Weibull distribution:

Uniform: distribution (λi ∼ Uniform(0, 1)):
a1,N = 1/N, b1,N = 1.

⇒ allows λ1,i to be cross-sectionally dependent, characterized by an
extremal index θ, appeared in G1
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One Factor Case

One factor case: Extreme value theory

For a target probability p = 1− G1,m(z) (z can be calculated), the

threshold ρ0 =
σ2
f1

(a1,Nz+b1,N )2

1+h(m)
m σ2

e+σ2
f1

(a1,Nz+b1,N )2
such that P(ρ ≥ ρ0) ≥ p + op(1)

has

ρ0 increases in signal-to-noise ratio s = σf1/σe

ρ0 increases in the dispersion of loadings’ distribution

ρ0 increases in # nonzeros m and N (from simulation)

ρ0 decreases in h(m) (h(m) measures how correlated idiosyncratic
errors are)
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Multi-Factor Case

Multi Factors

Challenges

Thresholded loadings/Proximate factors are in general not
orthogonal to each other

Generalized correlation take this into account

Additional Assumptions

1 Each cross section unit can only have very large exposure to one
factor

2 Tail distributions for each factor loading are asymptotically
independent

⇒ Only for theoretical derivation, not needed for this approach to work
in simulation and empirical applications

⇒ Assumption 1 can be relaxed: some cross section units only have
large exposure to one factor after rotated by some matrix
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Multi-Factor Case

Multi Factors

Theorem 2: Distribution of generalized correlation

The asymptotic lower bound equals

lim
N,T→∞

P (ρ ≥ ρ0) ≥
K∏
j=1

(
1− G∗j,m(τ)

)
− lim

N→∞
P(σmin(B) < γ) (1)

ρ0 = K − (1 + h(m))σ2
e

mγ2

K∑
j=1

1

sju2
j,N(τ)

,

where S = diag(s1, s2, · · · , sK ) are the eigenvalues of ΣFΣΛ in decreasing
order and 0 < γ < 1.

⇒
∏K

j=1

(
1− G∗j,m(τ)

)
: product of loadings’ tail distributions

(asymptotically independent)

⇒ B ∝ S1/2Λ>Λ̃. P(σmin(B) < γ): σmin(B) measures how correlated
one thresholded loading is to other population factor loadings
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Empirical Results

Single-sorted Portfolios

Portfolio Data

Monthly return data from 07/1963 to 12/2016 (T = 638) for
N = 370 portfolios

Kozak, Nagel and Santosh (2017) data: 370 decile portfolios sorted
according to 37 anomaly characteristics, such as momentum,
volatility, turnover, size and volume.
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Empirical Results

Single-sorted Portfolios

(a) Generalized Correlation (b) Variance Explained

Figure: Financial single-sorted portfolios: Generalized correlation between
F̃ and F̂ normalized by K and proportion of variance explained by F̃ and
F̂ as a function of non-zero loading elements m , where K varies from 3
to 7. (N = 370, T = 638)
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Empirical Results

Single-sorted Portfolios

m F̂1 F̂2 F̂3 F̂4 F̂5

10 0.993 0.992 0.771 0.918 0.837
20 0.995 0.948 0.883 0.949 0.890
30 0.996 0.965 0.935 0.966 0.910
40 0.997 0.971 0.958 0.975 0.923

Table: Financial single-sorted portfolios: Generalized correlation between
each F̂j and all F̃ for K = 5. These generalized correlations correspond

to R2 from a regression of each F̂j on all F̃ .
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Empirical Results

Macroeconomic data

Macroeconomic Data

Monthly data from 01/1959 to 02/2018 for N = 128 variables:

1 output and income
2 labor market
3 housing
4 consumption, orders and inventories
5 money and credit
6 interest and exchange rates
7 prices
8 stock market

24
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Empirical Results

Macroeconomic data

(a) Generalized Correlation (b) Variance Explained

Figure: Macroeconomic data: Generalized correlation between F̃ and F̂
normalized by K and proportion of variance explained by F̃ and F̂ , where
K varies from 4 to 20. (N = 128, T = 707)
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Empirical Results

Macroeconomic data

m F̂1 F̂2 F̂3 F̂4 F̂5 F̂6 F̂7 F̂8

10 0.953 0.959 0.949 0.953 0.961 0.799 0.833 0.767
15 0.967 0.970 0.958 0.956 0.964 0.857 0.867 0.837
20 0.977 0.974 0.957 0.963 0.961 0.905 0.919 0.891
25 0.983 0.980 0.961 0.979 0.973 0.937 0.943 0.929

Table: Macroeconomic data: Generalized correlation between each F̂j and

F̃ , where K = 8. These generalized correlations correspond to R2 from a
regression of each F̂j on all F̃ .
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Empirical Results

Macroeconomic data

Figure: Macroeconomic data: 8-factor model, each sparse loading in Λ̃
has 10 nonzero entries. Values in this figure represent the number of
nonzero entries in a particular group for a particular sparse loading. The
8 groups are: 1. output and income; 2. labor market; 3. housing; 4.
consumption, orders and inventories; 5. money and credit; 6. interest and
exchange rates; 7. prices; 8. stock market
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Conclusion

Conclusion

Methodology

Proximate factors (portfolios of a few cross-section units) for latent
population factors (portfolios of all cross-section units)

Simple thresholding estimator based on largest loadings

Proximate factors approximate population factors well without
sparsity assumption

Asymptotic probabilistic lower bound for (generalized) correlation

⇒ A few observations summarize most of the information

Empirical Results

Good approximation to population factors with 5-10% cross-section
units
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Model

Multiple Factors

Multiple Factor: Rotate and threshold

Assume there exists orthonormal matrix P s.t. large values in columns of
W P = ΛHSP do not overlap (almost orthogonal)

m nonzero entries in W̃j are the largest in Ŵj satisfying
maxj,k 6=j |ŵP

i,k/ŵ
P
i,j | < c and are standardized by

W̃ P =

[
ŴP

1 �M1

‖ŴP
1 �M1‖

ŴP
2 �M2

‖ŴP
2 �M2‖ · · · ŴP

K�MK

‖ŴP
K
�MK‖

]
.

The proximate factors are

F̃P = XTW̃ P((W̃ P)TW̃ P)−1 = XTW̃ P

Generalized Correlation

ρ = tr
(

(FTF/T )−1(FT F̃P/T )((F̃P)T F̃P/T )−1((F̃P)TF/T )
)

A 1
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Model

Multiple Factors

Theorem 4: Rotate and threshold

Let w̄P
(m),j be the m-th order statistic of the entries in |wP

j | that satisfy

maxj,k 6=j |wP
i,k/w

P
i,j | < c and assume that the cumulative density function of

w̄P
(m),j is continuous. Then for a particular threshold 0 < ρ0 < K and a fixed m,

we have

lim
N,T→∞

P(ρ > ρ0) ≥ lim
N→∞

P

(
K∑
j=1

1

(w̄P
(m),j)

2
<

m(1− γ)(K − ρ0)

(1 + f (m))σ2
e

)
, (2)

where γ = c(2 + c(K − 2))(K(K − 1))1/2.

A 2
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Model

Relationship with Lasso

Alternative approach with Lasso:

1 Estimate factors by PCA, i.e XTXF̂ = F̂V with V matrix of
eigenvalues.

2 Estimate loadings by minimizing
∥∥∥X − ΛF̂T

∥∥∥2

F
+ α ‖Λ‖1.

Divide the minimizer by its column norm (standardize each
loading) to obtain Λ̄

3 Proximate factors from Lasso approach are F̄ = XT Λ̄(Λ̄T Λ̄)−1

⇒ Same selection of non-zero elements (for one factor case) but
different weighting

⇒ Under certain conditions worse performance than thresholding
approach

Tuning parameter less transparent

A 3
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Simulation

Simulation

Compare probabilistic lower bounds with Monte-Carlo
simulations

Factors: K = 1 or K = 2 and Ft ∼ N(0, σ2
f )

Loadings: λi ∼ N(0, 1) i.i.d.

Residuals: σe = 1 and et,i ∼ N(0, 1) i.i.d.

Vary signal-to-noise ratio with σf ∈ {0.8, 1.0, 1.2}
N = 100) and T ∈ {50, 100, 200}
We analyze:

Probabilistic lower bound for ρ0 = 0.95
Distribution of lower bound with extreme value distribution

A 4
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Simulation

Simulation: One factor with very strong signal

Figure: Probabilistic lower bound: σf = 1.2, ρ0 = 0.95
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Simulation

Simulation: One factor with weaker signal

Figure: Probabilistic lower bound: σf = 1.0, ρ0 = 0.95

A 6
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Simulation

Simulation: One factor with weak signal

Figure: Probabilistic lower bound: σf = 0.8, ρ0 = 0.95

A 7
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Simulation

Simulation: One factor with increasing N

(a) One-factor model
(σf = 1.0)

(b) Multi-factor model
(σf = [1.2, 1.0])

Figure: Probabilistic lower bound: ρ0 = 0.95

A 8
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Simulation

Simulation: Two Factors

(a) σf = [1.0, 0.8], (b) σf = [1.2, 1.0] (c) σf = [1.5, 1.2]

Figure: Probabilistic lower bound: ρ0 = 1.9.

A 9
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Empirical Results

Empirical Application: Size and Investment Portfolios

25 portfolios formed on size and investment
(07/1963-10/2017, 3 factors, daily data)

(a) Generalized correlation (b) Variance explained

(c) RMS pricing error (d) Max Sharpe Ratio
A 10
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Empirical Results

Empirical Application: Size and Investment Portfolios

Figure: Portfolio weights of 1. statistical factor

⇒ Equally weighted market factor
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Empirical Results

Empirical Application: Size and Investment Portfolios

Figure: Portfolio weights of 2. statistical factor

⇒ Small-minus-big size factor

⇒ Proximate factor with 4 largest weights correlation 0.97 with size
factor
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Empirical Results

Empirical Application: Size and Investment Portfolios

Figure: Portfolio weights of 3. statistical factor

⇒ High-minus-low value factor

⇒ Proximate factor with 4 largest weights correlation 0.79 with
investment factor

A 13
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Empirical Results

Single-sorted portfolios

Anomaly characteristics Anomaly characteristics

1 Accruals - accrual 20 Momentum (12m) - mom12
2 Asset Turnover - aturnover 21 Momentum-Reversals - momrev
3 Cash Flows/Price - cfp 22 Net Operating Assets - noa
4 Composite Issuance - ciss 23 Price - price
5 Dividend/Price - divp 24 Gross Protability - prof
6 Earnings/Price - ep 25 Return on Assets (A) - roaa
7 Gross Margins - gmargins 26 Return on Book Equity (A) - roea
8 Asset Growth - growth 27 Seasonality - season
9 Investment Growth - igrowth 28 Sales Growth - sgrowth
10 Industry Momentum - indmom 29 Share Volume - shvol
11 Industry Mom. Reversals - indmomrev 30 Size - size
12 Industry Rel. Reversals - indrrev 31 Sales/Price - sp
13 Industry Rel. Rev. (L.V.) - indrrevlv 32 Short-Term Reversals - strev
14 Investment/Assets - inv 33 Value-Momentum - valmom
15 Investment/Capital - invcap 34 Value-Momentum-Prof. - valmomprof
16 Idiosyncratic Volatility - ivol 35 Value-Protability -valprof
17 Leverage - lev 36 Value (A) - value
18 Long Run Reversals - lrrev 37 Value (M) - valuem
19 Momentum (6m) - mom

A 14
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