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Optimized portfolios and the
impact of estimation error



Optimized portfolios

Since Markowitz (1952), quantitative investors have constructed
portfolios with mean-variance optimization.

A simple quadratic program given a mean vector m and a
covariance matrix �.
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The impact of estimation error

In practice, optimization relies on an estimate of the mean and
covariance matrix (�̂ estimates �).

Estimation error leads to two types of errors:

• You get the wrong portfolio: Estimation error distorts portfolio
weights so optimized portfolios are never optimal.

• And it’s probably riskier than you think: A risk-minimizing
optimization tends to materially underforecast portfolio risk.

We measure and correct both errors in simulation.
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Two metrics for the impact of
estimation error in simulation



Errors in weights

(Squared) tracking error of an optimized portfolio ŵ measures its
distance from the optimal portfolio w∗:

T 2
ŵ = (ŵ −w∗)⊤� (ŵ −w∗)

Tracking error is the width of the distribution of return differences
between w and ŵ.

Ideally, tracking error should be close to 0.
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Errors in risk forecasts

Variance forecast ratio measures the error in the risk forecast as:

ℛŵ = ŵ⊤�̂ŵ
ŵ⊤�ŵ

This is a ratio of the estimated portfolio risk over the actual risk of
the estimated minimum variance portfolio ŵ.

Ideally, the variance forecast ratio should be close to 1.
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Error metrics in simulation

In simulation (given a model for �),

• generate security returns and compute w∗ using �,
(� is accessible in simulation)

• estimate � by �̂ from observed returns and compute ŵ,

• measure the error metrics T 2
ŵ
and ℛŵ.
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Minimum variance



Why minimum variance?

Theory

Error amplification: Highly sensitive to estimation error.

Error isolation: Impervious to errors in expected return.

Insight into a general problem: Informs our understanding of how
estimation error distorts portfolios and points to a remedy.

Practice

Large investments: For example, the iShares Edge MSCI Min Vol
USA ETF (ticker USMV) had net assets of roughly $14 billion on
Sept. 28, 2018.
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True and estimated minimum variance portfolios

The true minimum variance portfolio w∗ is the solution to:

min
w∈ℝN

w⊤�w

w⊤1N = 1 .

In practice, we construct an estimated minimum variance portfolio,
ŵ, that solves the same problem with �̂ replacing �.
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Covariance matrix estimation



Structure and dimension reduction

The simplest candidate for �̂ is the sample return covariance
matrix, S.

• But it is useless for portfolio construction since it is highly
singular.

• The number of parameters tends to (vastly) exceed the
number of observations.

• Still, it can serve as a starting point for constructing better
estimates.

Factor models add (empirically sound) structure to a covariance
matrix and reduce the number of required parameters to a
manageable level.
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One-factor model of security returns

The return generating process for N securities is specified by

R = �� + �

where � is the return to a market factor, � is the N-vector of
factor exposures, � is the N-vector of diversifiable specific returns.

The (�, �) are latent variables. We observe T i.i.d. returns to N
securities, i.e., R1, R2,… , RT .
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One-factor model covariance matrix

When the � and � are uncorrelated (as we assume), the security
covariance matrix can be expressed as

� = �2��⊤ + �,

where �2 is the variance of the market factor and the diagonal
entries of � are specific variances, �2.

Assumption 1. �2∕N → �∞ ∈ (0,∞) and � = �2I.
Assumption 2. {Ri}Ti=1 are i.i.d. with R1 ∼  (0,�).
Assumption 3. � always has some dispersion.
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Estimation error in factor models

In practice, we have only the estimates �̂, �̂ and �̂.

�̂ = �̂2�̂�̂⊤ + �̂

We measure the errors in estimated parameters, of course.

But our focus is how errors in parameter estimates affect portfolio
metrics: (squared) tracking error and variance forecast ratio.

12



Factor model estimation with PCA

PCA: compute the sample covariance matrix S and set:

• �̂ – first eigenvector of S,
• �̂2 – largest eigenvalue of S,
• �̂2 – OLS regression of returns on the estimated factor.

PCA approximates true factors well for N large and �̂ = �.

Sample eigenvectors behave differently for N large and T fixed
(i.e., in the N ↑ ∞ and T fixed asymptotic regime).

Current techniques adjust only the eigenvalue �̂2 (typically biased
upward). No (direct) corrections of the eigenvector, �̂, are available.
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Motivating example



Parameter errors → portfolio metric errors

A large literature on random matrix theory identifies and corrects
biases in estimated eigenvalues.

It turns out, however, that in a simple PCA model, portfolio
metrics for a minimum variance portfolio are insensitive to errors in
eigenvalues.

But errors in the dominant eigenvector make a material difference.
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Selective error correction in minimum variance

Results communicated by Stephen Bianchi
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The dispersion bias



No reference frame to detect eigenvector bias...
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..unless the eigenvector is (mostly) positive

Let z = 1N∕
√

N (a vector on the unit N-sphere).

17



PCA bias characterization

Let z = 1N∕
√

N (a vector on the unit N-sphere).

This is the unique (up to negation) dispersionless unit vector.

Theorem

Let �̂ be a PCA-estimate of �. Then,

cos ��,z
a.s.∼  T cos ��̂,z (N ↑ ∞) (1)

with  T > 1. In other wordswords, ��̂,z is larger than ��,z with high
probability for N large.
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PCA bias illustration
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Error metrics for the minimum variance portfolio

Define x,y = x⊤y (on unit sphere x,y = cos �x,y) and

ℰ�̂ =
�,z − �,�̂�̂,z

sin ��̂,z
. (2)

The variable ℰ�̂ drives all the error in our metrics.

We prove, ℰ�̂ > 0 for the PCA-estimate �̂.
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Error metrics for the minimum variance portfolio

As N ↑ ∞, (for any �̂ such that infN ℰ2
�̂
> 0)

T 2
ŵ ∼

�2ℰ2
�̂

sin2 ��̂,z
ℛŵ ∼ �̂2N−1

�2ℰ2
�̂

. (3)

Remarkable: No dependence on the eigenvalue estimate �̂2.
(above, �2 = �2∕N)
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Bias correction



Dispersion bias correction

We propose a correction �̂∗ of the form,

�̂∗ ∝ �̂ + �z � ∈ ℝ .

We consider two estimators (i.e., values of �)

�1 =
�,z − �̂,z�̂,�
�̂,� − �̂,z�,z

(oracle, ℰ�̂∗ = 0) . (4)

�2 =
q�̂,z

1 − (q�̂,z)2
(q − q−1) (data-driven, ℰ�̂∗ ≈ 0) . (5)

where q is computed from observed data only.
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Dispersion bias correction

23



Dispersion bias correction
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Main result

Theorem
Under our assumptions, the oracle estimator achieves

ℛŵ
a.s.∼ �̂2∕�2 T 2

ŵ
a.s.∼ O(N−1) . (6)

Complementary results available in paper (online).
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Numerical simulation



Study outline

Even though our theory is worked out only for a one-factor model,
we experiment with security returns simulated with an empirically
guided four-factor model.

Calibrate to calm and stressed regimes.

Compare the accuracy of long-only minimum variance portfolio
weights and risk forecasts using the dispersion bias correction and
standard models, including vanilla PCA, beta shrinkage based on
Blume (1975), and covariance matrix shrinkage based on Ledoit &
Wolf (2004) and Ledoit & Wolf (2017).

26



Calibrating a four-factor model

Parameter Calm Stressed

market
volatility

16% 32%

style
volatility

[4%, 8%] [4%, 8%]

specific
volatility

[32%, 64%] [48%, 96%]

beta
dispersion

0.95 0.93
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Accuracy of long-only minimum variance portfolio weights
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Risk forecast accuracy for long-only minimum variance port-
folios
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True volatility of long-only minimum variance portfolios
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Summary

We provided a characterization of a systematic (dispersion) bias in
PCA factors (sample eigenvectors).

– applicable in many other settings.

Developed and tested oracle and data-driven corrections to mitigate
this dispersion bias (distinct from literature).

Emphasized portfolio-based (practitioner-oriented) metrics for
evaluating the impact of our bias correction.

Our results can be viewed as an extension and formalization to PCA
of ideas that have been known by practitioners since the 1970s.
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Ongoing research

Extend theory to account for what we see in simulation: allow for
multiple factors, non-Gaussian distributions and temporal
dependency.

Evaluate the dispersion bias correction on empirical data.

Explore bias corrections for non-dominant PCA factors.
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Thank You
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