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Motivation

I Consider a framework of trading which incorporates price
impact (both temporary and permanent)

I An agent has exposure to a factor which is not traded or in
which the agent’s trading is prohibited

I Such exposure can occur if an agent is endowed (or expected
to be endowed in the future) with shares of a particular asset

I The agent is still allowed to trade in an asset which is
correlated with the exposure

2 / 36



Related Literature

I (Almgren and Chriss 2001) - optimal execution with
temporary and permanent price impact

I (Henderson 2002) - considers valuation of claims on
non-tradable assets

I (Leung and Sircar 2009b), (Leung and Sircar 2009a), and
(Grasselli and Henderson 2009) - study valuation of employee
stock options by trading partially correlated assets

I (Leung and Lorig 2016) - consider the problem of statically
hedging a contingent claim written on a correlated asset
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Model - Inventory and Fundamental Price

I The agent’s inventory, Qt, is controlled through the speed of
trading, νt:

dQt = νtdt

I A large volume of trades in a short time will tend to impact
the price of the asset

I This effect is captured through a permanent impact on the
fundamental price of the traded asset:

dSt = (µ+ bνt)dt+ σdWt

I If the agent refrains from trading altogether then the
fundamental price follows an arithmetic Brownian motion
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Model - Wealth

I Large trade volumes will also tend to “walk the book”
executing at prices beyond the best bid and ask

I This effect is captured through a temporary price impact

I The agent’s cash process changes according to:

dXt = −Ŝtνtdt
Ŝt = St + kνt
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Model - Non-traded Factor

I If the agent refrains from trading then the non-traded factor
also follows an arithmetic Brownian motion correlated with W

I There is evidence that trading in one asset is accompanied by
an increase in activity in closely related assets (Tristan Buchs
2017 EPFL Master Thesis)

I This effect is captured through a permanent cross impact:

dUt = (β + cνt)dt+ ηdBt

d[W,B]t = ρdt
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Terminal Wealth

I We fix a terminal horizon for the trading period denoted T

I At time T the agent liquidates any position in the traded
asset and incurs a penalty

I Restrictions on the non-traded factor are lifted and exposure
to U is liquidated

I Terminal wealth is equal to

XT +QT (ST − αQT ) + ψ(UT )

where ψ represents the explicit dependence of the exposure to
the non-traded factor U
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Optimal Trading Program

I The agent desires to maximize expected utility of terminal
wealth by controlling the inventory trade process

I At time t the agent’s value function is

H(t, x, q, S, U) = sup
ν

Et
[
−e−γ(XT +QT (ST−αQT )+ψ(UT ))

]
I This stochastic optimal control problem has an associated

HJB equation
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HJB simplification

I The following ansatz gives an appropriate form of the value
function:

H(t, x, q, S, U) = −e−γ(x+qS+h(t,q,U))

I This simplifies the HJB equation to one for h:

∂th+ µq − 1

2
γσ2q2 + (β − γρσηq)∂Uh

+
1

2
η2∂UUh−

1

2
γη2(∂Uh)

2

+sup
ν

{
ν∂qh+ cν∂Uh+ bqν − kν2

}
= 0 ,

h(T, q, U) = ψ(U)− αq2 .
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Linear Exposure
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Linear Exposure

I The simplest case is when the exposure depends linearly on U :

ψ(U) = NU

I The agent has been endowed with N shares of an asset but is
restricted from trading in that asset until time T

I Analysis of the previous PDE suggests that we may take
h(t, q, U) to also have linear dependence on U

I Further analysis suggests quadratic dependence on q
(common for models with this structure)
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Linear Exposure - Value Function

I The value function can be expressed in closed form

I Of more interest is the optimal (feedback) trading strategy,
also in closed form:

ν∗(t, q) =
cN+ h1(t) + (2h2(t) + b)q

2k

where the functions h1 and h2 are deterministic (explicit
formula available)

I The trading speed has no dependence on U , therefore the
inventory process will be deterministic
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Linear Exposure - Inventory Path

I Exposed versus unexposed trading strategies
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Linear Exposure - Long Term Position

I The inventory appears to approach a particular level and stay
there for most of the trading period

I If the trading horizon is sufficiently long, the desired inventory
position of the agent is

µ− γρσηN
γσ2

I The agent trades as if the traded asset has modified drift:

µ 7→ µ− γρσηN
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Linear Exposure - Inventory Path

I Shorter trading horizons don’t offer enough time to enter the
risk-adjusted optimal position efficiently
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Non-Linear Exposure
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Non-Linear Exposure

I For general ψ the non-linear terms in the PDE do not allow
for easy treatment

I The value function is no longer quadratic with respect to q

I For small values of some parameters, an asymptotic expansion
allows for quadratic dependence on q

I Let θ be a small expansion parameter and replace
risk-aversion and cross impact with

c 7→ θc

γ 7→ θγ

I We suppose the function h can be expanded in θ

h(t, q, U) = h0(t, q, U) + θ

(
ch1(t, q, U) + γh2(t, q, U)

)
+ o(θ)
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Value Function - Order Zero

I The order zero component can be decomposed into
dependence on q and dependence on U separately:

h0(t, q, U) = f0(t) + f1(t)q + f2(t)q
2 + g(t, U) (1)

g(t, U) = E[ψ(ŨT )|Ũt = U ] (2)

dŨt = βdt+ ηdBt (3)

f0(t) =

∫ T

t

f2
1 (s)

4k
ds (4)

f1(t) =
µ(T − t)(4k +m(T − t))

4k + 2m(T − t)
(5)

f2(t) =
−km

2k +m(T − t)
− b

2
(6)

m = 2α− b (7)
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Value Function - Order Zero

I Dependence on U comes through the expected payoff of a
European option on the non-traded factor with Bachelier
dynamics

I This option value assumes unaffected prices of the non-traded
factor (no cross impact)

I Dependence on q comes through the value of a modified
optimal trading program:

I Risk-neutral agent

I Exposure only to traded asset S
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Trading Strategy - Approximation

I From the HJB equation, the feedback form of the optimal
trading speed is

ν∗(t, q, U) =
∂qh+ c∂Uh+ bq

2k
(8)

I The optimal trading strategy can be approximated by

ν∗(t, q, U) = ν0(t, q) + θ

(
cν1(t, U) + γν2(t, q, U)

)
+ o(θ)

(9)

I The zero order term is given by

ν0(t, q) =
1

2k

(
f1(t) + (2f2(t) + b)q

)
(10)

I This is the optimal trading strategy of a risk-neutral execution
program as in (Almgren and Chriss 2001)
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Trading Strategy - First Order Approximation

ν∗(t, q, U) = ν0(t, q) + θ

(
cν1(t, U) + γν2(t, q, U)

)
+ o(θ)

I The first order terms are given by a stochastic representation:

ν1(t, U) =
1

2k

(
∂Ug(t, U) + λ1(t, U)

)
(11)

ν2(t, q) =
1

2k

(
Λ1(t, U) + 2Λ2(t)q

)
(12)

λ1(t, U) =
−m

2k +m(T − t)
E
[∫ T

t
∂Ug(s, Ũs)ds

∣∣∣∣Ũt = U

]
(13)

Λ1(t, U) = E
[∫ T

t

2k +m(T − s)

2k +m(T − t)

f1(s)Λ2(s) − kρση∂Ug(s, Ũs)

k
ds

∣∣∣∣Ũt = U

]
(14)

Λ2(t) =
−σ2(T − t)(12k2 + 6km(T − t) +m2(T − t)2)

6(2k +m(T − t))2
(15)

I In particular, dependence on U means inventory is no longer
deterministic
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Trading Strategy - First Order Approximation

I Inspection of the stochastic representations of ν1 and ν2 show
that dependence on U comes in a specific form

I Any dependence on U comes from the “Delta” of the
Bachelier option: ∂Ug(t, U)

I If the payoff is linear (ψ(U) = NU) then the Delta is N

Theorem (Closed Form Approximation)

Denote the optimal strategy for the linear payoff by
ν∗` (t, q;N).Then the optimal strategy with exposure ψ(UT ) is
approximated by

ν∗(t, q, U) = ν∗` (t, q; ∂Ug(t, U)) + o(θ)
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Trading Strategy - First Order Approximation

ψ(U), ν∗ - NU, ν∗`

Linear Payoff (exact closed form)

?

ψ(U), ν∗ + o(θ) - NU, ν∗` + o(θ)

?Linear Payoff (∂Ug = N)
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Simulation of Optimal Trading Strategy

I We would like to know how the optimal trading strategy
behaves relative to the order zero strategy

I The specific payoff considered is that of 100 at-the-money call
options

ψ(UT ) = 100(UT − U0)+

I We consider an agent beginning with no inventory in the
traded asset: Q0 = 0

I Also specify unimpacted prices to be martingales: µ = β = 0

I In this setting the order zero strategy is to make no trades
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Effect of Cross Impact on Inventory Distribution

I Inventory at time T appears to be drawn towards two possible
values (c = 10−3)
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Non-traded Factor Paths

I Individual paths influence agent’s optimal decisions in very
different ways
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Effect of Cross Impact on Inventory Path

I Agent’s action depends on probability of expiring in-the-money
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I With high confidence of expiring in-the-money, agent targets
terminal inventory of 100c

2α−b , otherwise targets zero
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Effect of Risk-Aversion on Inventory Distribution

I Distribution still appears somewhat bimodal (γ = 10−3)
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Effect of Risk-Aversion on Inventory Path

I The agent’s action depends on the future integrated Delta of
the option
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I Higher future Delta requires a larger short position to hedge
the option
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Counteracting Effects

I The two parameters which induce behaviour that differs from
the order zero strategy have significantly different effects

I Risk-aversion gives incentive for the agent to hold a short
position with large variance in the middle of the trading
period, low variance at the end

I Cross impact gives incentive for a long position with variance
increasing monotonically
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Counteracting Effects on Inventory Path

I Paths which are expected to expire in-the-money induces a
short position over most of the horizon, but a long position at
maturity
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Counteracting Effects - Distribution Through Time
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Thanks for your attention!

Ryan Donnelly

rdon@uw.edu
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Linear Exposure Value Function

h(t, q, U) = h0(t) + h1(t)q + h2(t)q2 + NU

h0(t) = (βN−
1

2
γη2N2)(T − t) +

1

4k

∫ T

t
(h1(s) + cN)2ds

h1(t) =
ζk

ω(φ−e−
ω
k
(T−t) + φ+e

ω
k
(T−t))

(
φ−(1 − e−

ω
k
(T−t)) − φ+(1 − e

ω
k
(T−t))

)
+

2ωcN

φ−e−
ω
k
(T−t) + φ+e

ω
k
(T−t)

− cN

h2(t) = ω
φ−e−

ω
k
(T−t) − φ+e

ω
k
(T−t)

φ−e−
ω
k
(T−t) + φ+e

ω
k
(T−t)

−
b

2

ω =

√
kγσ2

2

φ± = ω ± α∓
b

2

ζ = µ− γρσηN
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