A Class of Stochastic Games and Moving Free Boundary Problems

Renyuan Xu

University of California, Berkeley

Joint work with Xin Guo (UC Berkeley) and Wenpin Tang (UCLA)

9th WCMF

Table of Contents

Game Set-up

Different Games

Pooling Game Dividing Game Sharing Game

Connections

Game Comparison: Pooling, Sharing and Dividing Connection to Rank-dependent SDEs

▶ N players in the system

- N players in the system
- ▶ Dynamics of each player $i: (\in \mathbb{R})$ $dX_t^i = b^i(X_t)dt + \sigma_i(X_t)dB_t, \ X_{0-}^i = x^i$

- N players in the system
- ▶ Dynamics of each player i: $(\in \mathbb{R})$ $dX_t^i = b^i(\boldsymbol{X}_t)dt + \sigma_i(\boldsymbol{X}_t)d\boldsymbol{B}_t + d\xi_t^{i,+} d\xi_t^{i,-}, \ X_{0-}^i = x^i$

- N players in the system
- ▶ Dynamics of each player i: $(\in \mathbb{R})$ $dX_t^i = b^i(\boldsymbol{X}_t)dt + \sigma_i(\boldsymbol{X}_t)d\boldsymbol{B}_t + d\xi_t^{i,+} - d\xi_t^{i,-}, \ \ X_{0-}^i = x^i$
- Admissibility:
 - $(\xi^{i,+}, \xi^{i,-}) \in \mathcal{U}$: measurability, adaptiveness, non-decreasing càdlàg, $\int_0^\infty e^{-\alpha_i t} d\xi_t^i < \infty$, where $\xi_t^i = \xi_t^{i,+} + \xi_t^{i,-}$

- N players in the system
- ▶ Dynamics of each player i: $(\in \mathbb{R})$ $dX_t^i = b^i(\boldsymbol{X}_t)dt + \sigma_i(\boldsymbol{X}_t)d\boldsymbol{B}_t + d\xi_t^{i,+} - d\xi_t^{i,-}, \ \ X_{0-}^i = x^i$
- Admissibility:
 - $(\xi^{i,+}, \xi^{i,-}) \in \mathcal{U}$: measurability, adaptiveness, non-decreasing càdlàg, $\int_0^\infty e^{-\alpha_i t} d\xi_t^i < \infty$, where $\xi_t^i = \xi_t^{i,+} + \xi_t^{i,-}$
 - ► Resource allocation constraint (RAC):

$$F(\check{\xi}^1,\cdots,\check{\xi}^N)\leq C$$

- N players in the system
- ▶ Dynamics of each player i: $(\in \mathbb{R})$ $dX_t^i = b^i(\boldsymbol{X}_t)dt + \sigma_i(\boldsymbol{X}_t)d\boldsymbol{B}_t + d\xi_t^{i,+} - d\xi_t^{i,-}, \ \ X_{0-}^i = x^i$
- Admissibility:
 - $(\xi^{i,+}, \xi^{i,-}) \in \mathcal{U}$: measurability, adaptiveness, non-decreasing càdlàg, $\int_0^\infty e^{-\alpha_i t} d\xi_t^i < \infty$, where $\xi_t^i = \xi_t^{i,+} + \xi_t^{i,-}$
 - Resource allocation constraint (RAC):

$$m{F}(\check{\xi}^1,\cdots,\check{\xi}^N) \leq m{C}$$

► Objective (cost) :

$$J^i(\mathbf{x}, \mathbf{\xi}) = \mathbb{E} \int_0^\infty e^{-\alpha^i t} \left[h^i(X_t^1, \cdots, X_t^N) dt + \lambda^i d \check{\xi}_t^i \right]$$

- N players in the system
- **▶** Dynamics of each player *i*:

$$dX_t^i = b^i(X_t)dt + \sigma_i(X_t)dB_t + d\xi_t^{i,+} - d\xi_t^{i,-}, X_{0-}^i = x^i$$

- Admissibility:
 - $(\xi^+, \xi^-) \in \mathcal{U}_N^i$: non-decreasing càdlàg, measurability, adaptiveness, $\int_0^\infty e^{-\alpha_i t} d\xi_t^i < \infty$, where $\xi^i = \xi^{i,+} + \xi^{i,-}$
 - ► Resource allocation constraint (RAC):

$$F(\check{\xi}^1,\cdots,\check{\xi}^N) \leq C$$

Objective:

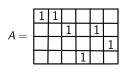
$$J^{i}(\mathbf{x},\boldsymbol{\xi}) = \mathbb{E} \int_{0}^{\infty} e^{-\alpha^{i}t} \left[h^{i}(X_{t}^{1},\cdots,X_{t}^{N}) dt + \lambda^{i} d\xi_{t}^{i} \right]$$

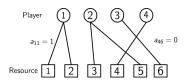
▶ Pooling game: $\sum_{i=1}^{N} \int_{0}^{\infty} d\xi_{t}^{i} \leq y$

- ▶ Pooling game: $\sum_{i=1}^{N} \int_{0}^{\infty} d\xi_{t}^{i} \leq y$
- ▶ Dividing game: $\int_0^\infty d\xi_t^i \le y^i \ (i = 1, 2, \dots, N)$

- ▶ Pooling game: $\sum_{i=1}^{N} \int_{0}^{\infty} d\xi_{t}^{i} \leq y$
- ▶ Dividing game: $\int_0^\infty d \xi_t^i \le y^i \ (i = 1, 2, \dots, N)$
- **Sharing game:** N players M resources:

- ▶ Pooling game: $\sum_{i=1}^{N} \int_{0}^{\infty} d\xi_{t}^{i} \leq y$
- ▶ Dividing game: $\int_0^\infty d\xi_t^i \le y^i \ (i=1,2,\cdots,N)$
- ▶ **Sharing game:** N players M resources:
 - ▶ Adjacent matrix: $\mathbf{A} = (a_{ij})_{1 \leq i \leq N, 1 \leq j \leq M}$, $a_{ij} = 0$ or 1





- ▶ Pooling game: $\sum_{i=1}^{N} \int_{0}^{\infty} d\xi_{t}^{i} \leq y$
- ▶ Dividing game: $\int_0^\infty d\check{\xi}_t^i \le y^i \ (i=1,2,\cdots,N)$
- **Sharing game:** N players M resources:
 - Adjacent matrix: special cases

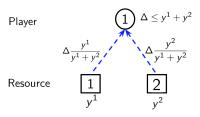
$$A = \boxed{\begin{array}{c|cccc} 1 & 1 & 1 \\ \hline & 1 \\ \hline & & 1 \\ \hline & & & 1 \\ \hline & & & 1 \\ \hline & & & & & 1 \\ \hline \end{array}}$$

(a) Pooling

(b) Dividing

- ▶ Pooling game: $\sum_{i=1}^{N} \int_{0}^{\infty} d\xi_{t}^{i} \leq y$, $\Delta \leq y^{1} + y^{2}$
- ▶ Dividing game: $\int_0^\infty d\xi_t^i \le y^i \ (i=1,2,\cdots,N)$
- ► **Sharing game:** N players M resources:
 - ▶ Adjacent matrix: $\mathbf{A} = (a_{ij})_{1 \leq i \leq N, 1 \leq j \leq M}$, $a_{ij} = 0$ or 1
 - ▶ Resource allocation policy: $(Y_t^1, ..., Y_t^M; t \ge 0)$

$$Y_t^j = y^j - \sum_{i=1}^N \int_0^t \frac{a_{ij} Y_{s-}^j}{\sum_{i=1}^M a_{ij} Y_{s-}^j} d\xi_s^i \ge 0, \quad \text{and} \quad Y_{0-}^j = y^j$$



- ▶ Pooling game: $\sum_{i=1}^{N} \int_{0}^{\infty} d\xi_{t}^{i} \leq y$, $\Delta \leq y^{1} + y^{2}$
- ▶ Dividing game: $\int_0^\infty d\xi_t^i \le y^i \ (i = 1, 2, \dots, N)$
- ▶ **Sharing game:** N players M resources:
 - ▶ Adjacent matrix: $A = (a_{ij})_{1 \le i \le N, 1 \le j \le M}$, $a_{ij} = 0$ or 1
 - Resource constraint: $(Y_t^1, \dots, Y_t^M; t \ge 0)$

$$Y_t^j = y^j - \sum_{i=1}^N \int_0^t \frac{a_{ij} Y_{s-}^j}{\sum_{j=1}^M a_{ij} Y_{s-}^j} d\xi_s^i \ge 0, \quad \text{and} \quad Y_{0-}^j = y^j$$

▶ Well-definedness: $\sum_{j=1}^{M} a_{ij} \ge 1$, $\sum_{i=1}^{N} a_{ij} \ge 1$

Sharing game

$$J^{i}(\mathbf{x}, \mathbf{y}; \boldsymbol{\xi}) := \mathbb{E} \int_{0}^{\infty} e^{-\alpha^{i}t} (h^{i}(X_{t}^{1}, \cdots, X_{t}^{N}) dt + \lambda_{i} d\xi_{t}^{i})$$

$$dX_{t}^{i} = b^{i}(\boldsymbol{X}_{t}) dt + \boldsymbol{\sigma}^{i}(\boldsymbol{X}_{t}) d\boldsymbol{B}_{t} + d\xi_{t}^{i,+} - d\xi_{t}^{i-}, \qquad X_{0-}^{i} = x^{i}$$

$$dY_{t}^{j} = -\sum_{i=1}^{N} \frac{a_{ij} Y_{t-}^{j}}{\sum_{k=1}^{M} a_{ik} Y_{t-}^{k}} d\xi_{t}^{i}, \qquad Y_{0-}^{j} = y^{j}$$

$$\blacktriangleright \boldsymbol{\xi} \in \mathcal{S}(\boldsymbol{y}) := \left\{ \boldsymbol{\xi} : \xi^{i} \in \mathcal{U}, Y_{t}^{j} \geq 0, \forall i, j \right\},\$$

 $\mathcal{U} := \{ (\xi^+, \xi^-) : \xi^+ \text{ and } \xi^- \text{ are } \mathcal{F}^{\boldsymbol{X}, \boldsymbol{Y}} \text{-progressively measurable,}$ càdlàg, and non-decreasing, with $\xi^+_{0-} = \xi^-_{0-} = 0 \},$

- ▶ h^i : convex, symmetric, $0 < k \le h'' < K$,
- $ightharpoonup \alpha^i > 0$: discount factor.

Stochastic Game: Special Case (N = 1)

► Two-dimensional control problem:

$$v(x,y) = \inf_{\xi \in S(y)} \int_0^\infty e^{-\alpha t} \left[h(X_t) dt + \lambda d \xi_t \right]$$

$$dX_t = \mu(X_t) dt + \sigma(X_t) dB_t + d\xi_t^+ - d\xi_t^-, \quad X_{0-} = x$$

$$dY_t = -d\xi_t^+ - d\xi_t^-, \quad Y_{0-} = y$$

Partial references:

- ► Finite fuel problem: Beneš, Shepp & Witsenhausen (1980), Karatzas (1983), Ma (1993)
- Transaction cost analysis: Davis & Norman (1990), Soner & Shreve (1994), Dai & Yi (2009), Kallsen & Muhle-Karbe (2010)
- ▶ Optimal execution/price impact: Guo & Zervos (2015), Motairi & Zervos (2017)

Stochastic Game: Nash equilibrium

Define the *N*-player game with the cost functions $(J^1(\mathbf{x},\mathbf{y};\boldsymbol{\xi}),\ldots,J^N(\mathbf{x},\mathbf{y};\boldsymbol{\xi}))$

Definition (Nash equilibrium)

A tuple of admissible controls $\boldsymbol{\xi}^* := (\xi^{1*}, \cdots, \xi^{N*})$ is a Markovian Nash equilibrium strategy (NES) if for each admissible $(\boldsymbol{\xi}^{-i*}, \xi^i)$,

$$J^{i}\left(\mathbf{x},\mathbf{y};\mathbf{\xi}^{*}\right)\leq J^{i}\left(\mathbf{x},\mathbf{y};\left(\mathbf{\xi}^{-i*},\xi^{i}\right)\right).$$

Here the strategies ξ^{i*} and ξ^{i} are deterministic functions of time t and $\boldsymbol{X}_{t}=(X_{t}^{1},\ldots,X_{t}^{N})$ with $\boldsymbol{X}_{0-}=\boldsymbol{x}$, and $\boldsymbol{Y}_{t}=(Y_{t}^{1},\ldots,Y_{t}^{M})$ with $\boldsymbol{Y}_{0-}=\boldsymbol{y}$.

Stochastic Game: Different Regions

Definition (Action and waiting regions)

The i^{th} player's action region is

$$\mathcal{A}_i := \{ (\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^N \times \mathbb{R}_+^M : d\xi^i(\boldsymbol{x}, \boldsymbol{y}) \neq 0 \},$$

and the waiting region is $W_i := (\mathbb{R}^N \times \mathbb{R}_+^M) \setminus \mathcal{A}_i$.

- $\mathcal{W}_{-i} := \cap_{j \neq i} \mathcal{W}_j$: common waiting region other than player i
- $ightharpoonup \mathcal{W}_{NE}$: common waiting region of all players
- $\blacktriangleright \ \mathcal{W}_{NE}(\mathbf{y}) := \{\mathbf{x} \in \mathbb{R}^{N} : (\mathbf{x}, \mathbf{y}) \in \mathcal{W}_{NE}\}$

Assumption

$$A_i \cap A_j = \emptyset, i \neq j$$

Stochastic Game: Free Boundary Problem

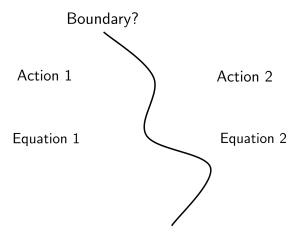


Table of Contents

Game Set-up

Different Games

Pooling Game Dividing Game Sharing Game

Connections

Game Comparison: Pooling, Sharing and Dividing Connection to Rank-dependent SDEs

Stochastic Game: Different Scenarios

We focus on:

1		1	1
	1		1
		1	1
1		1	1

(a) Sharing game N = M

1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

(b) Special case: pooling game (c) Special case: dividing game

Table of Contents

Game Set-up

Different Games
Pooling Game
Dividing Game
Sharing Game

Connections

Game Comparison: Pooling, Sharing and Dividing Connection to Rank-dependent SDEs

Pooling: Set-up

Pooling game (on $\mathbb{R}^N \times \mathbb{R}_+$)

$$J^{i}(\mathbf{x}, y; \mathbf{\xi}) := \mathbb{E} \int_{0}^{\infty} e^{-\alpha t} h(X_{t}^{i} - \overline{X}_{t}) dt$$

$$dX_{t}^{i} = dB_{t}^{i} + d\xi_{t}^{i,+} - d\xi_{t}^{i-}, \quad X_{0-}^{i} = x^{i}$$

$$dY_{t} = -\sum_{i=1}^{N} d\xi_{t}^{i}, \qquad Y_{0-} = y$$

- $ightharpoonup \overline{X}_t = rac{\sum_{i=1}^N X_t^i}{N}$: mean position
- ▶ h: convex, symmetric, $0 < k \le h'' < K$
- ho α > 0: discount factor
- **▶** Constraints:
 - **Zero-borrowing:** $Y_t \ge 0$ for all t a.s.
 - ▶ No simultaneous jump: $\mathbb{P}(d\xi_t^i d\xi_t^j \neq 0, \forall t \geq 0) = 1, i \neq j$

Pooling: Solution Derivation

- **Step 1**: Hamilton-Jacobi-Bellman system for *N* players
- **Step 2**: Candidate solution of game value
- **Step 3**: NE strategies via
 - Skorokhod problem
 - Sequential jumps at time 0

Step 1: HJB System

HJB system (on $\mathbb{R}^N \times \mathbb{R}_+$)

$$\min_{(x^i,y)\in\mathbb{R}\times\mathbb{R}_+} \left\{ -\alpha v^i + h + \frac{1}{2} \sum_{j=1}^N v^i_{x^jx^j}, -v^i_y + v^i_{x^i}, -v^i_y - v^i_{x^i} \right\} = 0$$
in \mathcal{W}_{-i}

- First equation. Player i solves a usual control problem with three choices:
 - ► Choice 1: do nothing
 - ► Choice 2: increase the state variable
 - ► Choice 3: decrease the state variable

Step 1: HJB System

HJB system (on
$$\mathbb{R}^N \times \mathbb{R}_+$$
)

$$\begin{aligned} \min_{(x^j,y)\in\mathbb{R}\times\mathbb{R}_+} \left\{ -v^i_y + v^i_{x^j}, -v^i_y - v^i_{x^j} \right\} &= 0 \\ &\quad \text{in } \mathcal{A}_j, j \neq i \end{aligned}$$

► Second equation. If player *j* intervenes, by the definition of Nash equilibrium, we expect that player *i* has no incentive to move

Step 1: HJB System

$$\begin{aligned} \text{HJB system (on } \mathbb{R}^N \times \mathbb{R}_+) \\ \min_{(x^i,y) \in \mathbb{R} \times \mathbb{R}_+} \left\{ -\alpha v^i + h + \frac{1}{2} \sum_{j=1}^N v^i_{x^j x^j}, -v^i_y + v^i_{x^i}, -v^i_y - v^i_{x^i} \right\} = 0 \\ & \text{in } \mathcal{W}_{-i} \\ \min_{(x^j,y) \in \mathbb{R} \times \mathbb{R}_+} \left\{ -v^i_y + v^i_{x^j}, -v^i_y - v^i_{x^j} \right\} = 0 \\ & \text{in } \mathcal{A}_i, j \neq i \end{aligned}$$

- First equation. Player i solves a usual control problem with three choices:
 - ► Choice 1: do nothing
 - Choice 2: increase the state variable
 - Choice 3: decrease the state variable
- ► Second equation. If player *j* intervenes, by the definition of Nash equilibrium, we expect that player *i* has no incentive to move

Step 2: Game Value (Special Case N = 1)¹

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } |x| \leq f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x > f_1^{-1}(y) \\ v(x_-, f_1(x_-)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } |x| \leq f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } |x| \leq f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-$$

¹ Beneš, Shepp and Witsenhausen (1980)

Step 2: Game Value (Special Case N = 1)¹

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } |x| \leq f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x > f_1^{-1}(y) \\ v(x_-, f_1(x_-)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } |x| \leq f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } |x| \leq f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

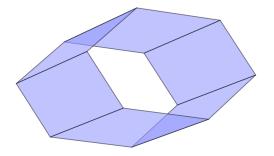
$$v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-$$

¹ Beneš, Shepp and Witsenhausen (1980)

Step 2: Boundary of Free Boundary Problem

 $W_{NE}(y)$ when N=3:



Step 2: Candidate Game Value

Candidate game value (Guo, Tang & X. (2018))

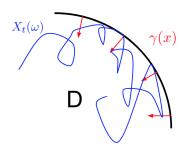
$$v^{i}(\boldsymbol{x}, y) = \begin{cases} p_{N}(\widetilde{x}^{i}) + A_{N}(y) \cosh(\widetilde{x}^{i} \sqrt{\frac{2(N-1)\alpha}{N}}) & \text{in } \mathcal{W}_{i} \\ v^{i} \left(\boldsymbol{x}^{-i}, x_{+}^{i} + \frac{\sum_{k \neq i} x^{k}}{N-1}, f_{N}(x_{+}^{i})\right) & \text{in } \mathcal{A}_{i}^{+} \end{cases} \\ v^{i} \left(\boldsymbol{x}^{-i}, \frac{\sum_{k \neq i} x^{k}}{N-1} - x_{-}^{i}, f_{N}(x_{-}^{i})\right) & \text{in } \mathcal{A}_{i}^{-} \end{cases} \\ v^{i} \left(\boldsymbol{x}^{-j}, x_{+}^{j} + \frac{\sum_{k \neq j} x^{k}}{N-1}, f_{N}(x_{+}^{j})\right) & \text{in } \mathcal{A}_{j}^{+}, j \neq i \end{cases} \\ v^{i} \left(\boldsymbol{x}^{-j}, \frac{\sum_{k \neq j} x^{k}}{N-1} - x_{-}^{j}, f_{N}(x_{-}^{j})\right) & \text{in } \mathcal{A}_{j}^{-}, j \neq i \end{cases}$$

- $ightharpoonup \widetilde{x}^i = x^i rac{\sum_{j \neq i} x^j}{N-1}, x^i_{\pm}$: unique positive root of $z \mp f_N(z) = \widetilde{x}^i \mp y$
- $ightharpoonup f_N(\cdot)$: threshold function

Step 3: NE via Skorokhod

A heuristic description of Skorokhod: A Skorokhod problem is to find a stochastic differential equation with some reflection directions on the boundary.

- Domain with boundary
- Reflection direction
- Dynamics



Step 3: NE via Skorokhod

Ingredient 1: common waiting region (unbounded)

$$\mathcal{W}_{NE}(y) = \{ \boldsymbol{x} \in \mathbb{R}^{N} : |\tilde{x}^{i}| < f_{N}^{-1}(y) \text{ for } 1 \leq i \leq N \}$$

$$F_{i}(y) = \{ \boldsymbol{x} \in \mathbb{R}^{N} : \frac{1}{N-1}(-1 + N\boldsymbol{e}_{i}) \cdot \boldsymbol{x} = f_{N}^{-1}(y) \} \cap \overline{\mathcal{W}_{NE}(y)}$$

$$F_{N+i}(y) = \{ \boldsymbol{x} \in \mathbb{R}^{N} : \frac{1}{N-1}(-1 + N\boldsymbol{e}_{i}) \cdot \boldsymbol{x} = -f_{N}^{-1}(y) \} \cap \overline{\mathcal{W}_{NE}(y)}$$

Figure 3: $W_{NE}(y)$ when N=3

Step 3: NE via Skorokhod

Ingredient 2: reflection direction

$$\gamma(\mathbf{x}) = -\mathbf{e}_i$$
 on $F_i(y)$
 $\gamma(\mathbf{x}) = \mathbf{e}_i$ on $F_{i+N}(y)$, $i = 1, 2, \dots, N$

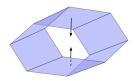


Figure 4: Reflection direction when N = 3

Ingredient 1: common waiting region (unbounded)

$$\mathcal{W}_{NE}(y) = \{ \boldsymbol{x} \in \mathbb{R}^{N} : |\widetilde{\boldsymbol{x}}^{i}| < f_{N}^{-1}(y) \text{ for } 1 \leq i \leq N \}$$

$$F_{i}(y) = \{ \boldsymbol{x} \in \mathbb{R}^{N} : \frac{1}{N-1}(-1 + N\boldsymbol{e}_{i}) \cdot \boldsymbol{x} = f_{N}^{-1}(y) \} \cap \overline{\mathcal{W}_{NE}(y)}$$

$$F_{N+i}(y) = \{ \boldsymbol{x} \in \mathbb{R}^{N} : \frac{1}{N-1}(-1 + N\boldsymbol{e}_{i}) \cdot \boldsymbol{x} = -f_{N}^{-1}(y) \} \cap \overline{\mathcal{W}_{NE}(y)}$$

Ingredient 2: reflection direction

$$\gamma(\mathbf{x}) = -\mathbf{e}_i$$
 on $F_i(y)$
 $\gamma(\mathbf{x}) = \mathbf{e}_i$ on $F_{i+N}(y)$, $i = 1, 2, \dots, N$

Ingredient 3: dynamic without control

$$\boldsymbol{X}_t = \boldsymbol{B}_t$$

Lemma (Skorokhod solution given y)

For fixed y > 0, there exists a reflected process $R_y(t) = (R_y^1(t), \dots, R_y^N(t))$ with $R_y(0) = \mathbf{x} \in \overline{\mathcal{W}_{NE}(y)}$ such that $R_y^i(t) = x^i + B^i(t) + \eta_y^i(t) - \eta_y^{i+N}(t) \in \overline{\mathcal{W}_{NE}(y)}$ for $1 \le i \le N$, where $(j = 1, 2, \dots, 2N)$

- $(\eta_{\nu}^{j}(t); t \geq 0)$ is the local time process on the boundary
- η_y^j increases only at times t such that $R_y^j(t) \in F_j(y)$

Key idea:

- ► Skew symmetry condition for bounded polyhedron in Ruth Williams (1987)
- Localization argument

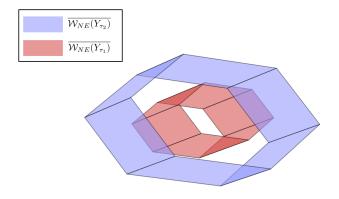


Figure 5: Pooling: evolving domain when N=3

Theorem (Skorokhod solution (Guo, Tang & X. 2018))

Inductively, for $k \geq 2$, let

$$au_k := \inf \left\{ t > au_{k-1} : \mathbf{R}_{Y_{ au_{k-1}}}(t - au_{k-1}) \in \partial \mathcal{W}_{NE}(Y_{ au_{k-1}})
ight\},$$

where $\mathbf{R}_{Y_{\tau_{k-1}}}$ is a copy of the reflected process in $\mathcal{W}_{NE}(Y_{\tau_{k-1}})$, starting at $\mathbf{X}_{\tau_{k-1}}$ and driven by $\mathbf{B}_k = (B_k^1, \dots, B_k^N)$. Then we have for $\tau_{k-1} < t < \tau_k$.

$$X_t^i = X_{\tau_{k-1}}^i + B_k^i(t - \tau_{k-1}) + \eta_{Y_{\tau_{k-1}}}^i(t - \tau_{k-1}) - \eta_{Y_{\tau_{k-1}}}^{i+N}(t - \tau_{k-1}),$$

and

$$Y_t = Y_{\tau_{k-1}} - \eta^i_{Y_{\tau_{k-1}}}(t - \tau_{k-1}) - \eta^{i+N}_{Y_{\tau_{k-1}}}(t - \tau_{k-1})$$

are the NE strategies.

Step 3: Sequential Jumps at Time 0

 A_i is defined in the way

- ▶ Player who is *furtherest away* controls
- ▶ Player with the *largest index* will control if ties occur

Game Set-up

Different Games

Pooling Game Dividing Game

Sharing Game

Connections

Game Comparison: Pooling, Sharing and Dividing Connection to Rank-dependent SDEs

Game Set-up

Different Games

Pooling Game Dividing Game

Sharing Game

Connections

Game Comparison: Pooling, Sharing and Dividing Connection to Rank-dependent SDEs

Sharing Game: Set-up

Sharing game

$$J^{i}(\mathbf{x}, \mathbf{y}; \boldsymbol{\xi}) := \mathbb{E} \int_{0}^{\infty} e^{-\alpha t} h(X_{t}^{i} - \overline{X}_{t}) dt$$

$$dX_{t}^{i} = dB_{t}^{i} + d\xi_{t}^{i,+} - d\xi_{t}^{i-}, \qquad X_{0-}^{i} = x^{i}$$

$$dY_{t}^{i} = -\sum_{j=1}^{N} \frac{a_{ji} Y_{t-}^{i}}{\sum_{k=1}^{N} a_{jk} Y_{t-}^{k}} d\xi_{t}^{j}, \qquad Y_{0-}^{i} = y^{i}$$

- $ightharpoonup \overline{X}_t = rac{\sum_{i=1}^N X_t^i}{N}$: mean position
- ▶ h: convex, symmetric, $0 < k \le h'' < K$
- ho α > 0: discount factor
- Constraints:
 - **Zero-borrowing:** $Y_t^i \ge 0$ for all t a.s. and i
 - ▶ No simultaneous jump: $\mathbb{P}(d\xi_t^i d\xi_t^j \neq 0, \forall t \geq 0) = 1, i \neq j$

Sharing Game: HJB

HJB system (\mathbb{R}^{M+N})

$$\begin{cases} \min_{(x^{i}, \mathbf{y}) \in \mathbb{R} \times \mathbb{R}_{+}^{N}} \left\{ -\alpha v^{i} + h + \frac{1}{2} \sum_{j=1}^{N} v_{x^{i}x^{j}}^{i}, -\sum_{j=1}^{N} \frac{a_{ij} y^{j}}{\sum_{j=1}^{N} a_{ij} y^{j}} v_{y^{j}}^{i} + v_{x^{i}}^{i}, \\ -\sum_{j=1}^{N} \frac{a_{ij} y^{j}}{\sum_{j=1}^{N} a_{ij} y^{j}} v_{y}^{i} - v_{x^{i}}^{i} \right\} = 0, \\ \text{for } (\mathbf{x}, \mathbf{y}) \in \mathbb{R} \times \mathbb{R}_{+}^{N} \left\{ -\sum_{k=1}^{N} \frac{a_{jk} y^{k}}{\sum_{s=1}^{N} a_{js} y^{s}} v_{y^{k}}^{i} + v_{x^{i}}^{i}, \\ -\sum_{k=1}^{N} \frac{a_{jk} y^{k}}{\sum_{s=1}^{N} a_{js} y^{s}} v_{y^{k}}^{i} - v_{x^{i}}^{i} \right\} = 0, \\ \text{for } (\mathbf{x}, \mathbf{y}) \in \mathcal{A}_{j}, j \neq i. \end{cases}$$

Sharing Game: Game Value

Game value of sharing(Guo, Tang & X. (2018))

$$v^{i}(\mathbf{x}, y) = \begin{cases} p_{N}(\widetilde{x}^{i}) + A_{N}(y) \cosh(\widetilde{x}^{i} \sqrt{\frac{2(N-1)\alpha}{N}}) & \text{in } \mathcal{W}_{i} \\ v^{i} \left(\mathbf{x}^{-i}, x_{+}^{i} + \frac{\sum_{k \neq i} x^{k}}{N-1}, f_{N}(x_{+}^{i})\right) & \text{in } \mathcal{A}_{i}^{+} \end{cases}$$

$$v^{i} \left(\mathbf{x}^{-i}, \frac{\sum_{k \neq i} x^{k}}{N-1} - x_{-}^{i}, f_{N}(x_{-}^{i})\right) & \text{in } \mathcal{A}_{i}^{-} \end{cases}$$

$$v^{i} \left(\mathbf{x}^{-j}, x_{+}^{j} + \frac{\sum_{k \neq j} x^{k}}{N-1}, f_{N}(x_{+}^{j})\right) & \text{in } \mathcal{A}_{j}^{+}, j \neq i \end{cases}$$

$$v^{i} \left(\mathbf{x}^{-j}, \frac{\sum_{k \neq j} x^{k}}{N-1} - x_{-}^{j}, f_{N}(x_{-}^{j})\right) & \text{in } \mathcal{A}_{j}^{+}, j \neq i \end{cases}$$

- $\widetilde{x}^i = x^i \frac{\sum_{j \neq i} x^j}{N-1}, \ x^i_{\pm} : \text{ unique positive root of } z \mp f_N(z) = \widetilde{x}^i \mp \sum_{j=1}^N a_{ij} y^j$
- $f_N(\cdot)$: threshold function

Game Set-up

Different Games

Pooling Game Dividing Game Sharing Game

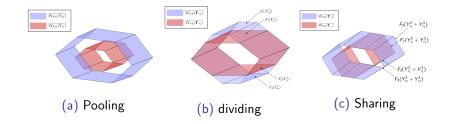
Connections

Game Comparison: Pooling, Sharing and Dividing

Connection to Rank-dependent SDEs

Game Comparison: NE Strategies

1	1	1
1	1	1
1	1	1



Comparison: Game Values

Proposition (Game value comparison (Guo & Tang and X. 2018))

$$\forall (\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^N \times \mathbb{R}_+^N$$
, when $y = \sum_{j=1}^N y^j$, $(\boldsymbol{x}, y) \in \mathcal{W}_i^{pool}$, and $(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{W}_i^{share} \cap \mathcal{W}_i^{divide}$, for each $i = 1, 2, \cdots, N$, $v_{pool}^i(\boldsymbol{x}, y) \leq v_{share}^i(\boldsymbol{x}, y) \leq v_{divide}^i(\boldsymbol{x}, y)$.

- ▶ Sharing has lower cost than playing selfishly
- Among all sharing strategies, pooling provides the lowest cost

Game Set-up

Different Games

Pooling Game Dividing Game Sharing Game

Connections

Game Comparison: Pooling, Sharing and Dividing

Connection to Rank-dependent SDEs

Controlled Rank-dependent SDEs

Controlled rank-dependent SDE (Guo, Tang & X. (2018))

$$dX_t^i = \sum_{j=1}^N 1_{F^i(\mathbf{X}_t, \mathbf{Y}_t) = F^{(j)}(\mathbf{X}_t, \mathbf{Y}_t)} \left(b_j dt + \sigma_j dB_t^j + \lambda^{j,+} d\xi_t^{j,+} - \lambda^{j,-} d\xi_t^{j,-} \right)$$

$$Y_t^i = y^i - \xi_t^{i,+} - \xi_t^{i,-} \quad \text{for } 1 \le i \le N$$

- Pooling game: $F^i(\boldsymbol{x},\boldsymbol{y}) = |x_i \frac{\sum_{j \neq i} x_j}{N-1}|$
- ▶ Dividing game: $F^i(\mathbf{x}, \mathbf{y}) = |x_i \frac{\sum_{j \neq i} x_j}{N-1} f_N^{-1}(y^i)|$
- ▶ Sharing game: $F^{i}(\mathbf{x}, \mathbf{y}) = |x_{i} \frac{\sum_{j \neq i} x_{j}}{N-1} f_{N}^{-1}(\sum_{j=1}^{N} a_{ij}y^{j})|$
- ▶ $F^{(1)} \leq \ldots \leq F^{(N)}$: the order statistics of $(F^i)_{1 \leq i \leq N}$

Controlled Rank-dependent SDEs

Controlled rank-dependent SDEs

$$dX_{t}^{i} = \sum_{j=1}^{N} 1_{F^{i}(\mathbf{X}_{t}, \mathbf{Y}_{t}) = F^{(j)}(\mathbf{X}_{t}, \mathbf{Y}_{t})} \left(b_{j} dt + \sigma_{j} dB_{t}^{j} + \lambda^{j,+} d\xi_{t}^{j,+} - \lambda^{j,+} d\xi_{t}^{j,-} \right)$$

$$Y_{t}^{i} = y^{i} - \xi_{t}^{i,+} - \xi_{t}^{i,-} \quad \text{for } 1 \leq i \leq N$$

- $ightharpoonup F^i$: rank function depends on both $oldsymbol{X}$ and $oldsymbol{Y}$
- ▶ $F^{(1)} \leq \ldots \leq F^{(N)}$: the order statistics of $(F^i)_{1 \leq i \leq N}$
- ▶ $b_i \in \mathbb{R}$, $\sigma_i \geq 0$
- $(\xi^{i,+}, \xi^{i,-})$: the controls

Controlled Rank-dependent SDEs

Controlled rank-dependent SDEs

$$dX_t^i = \sum_{j=1}^N 1_{F^i(\boldsymbol{X}_t, \boldsymbol{Y}_t) = F^{(j)}(\boldsymbol{X}_t, \boldsymbol{Y}_t)} \left(\delta_j dt + \sigma_j dB_t^j + \lambda^{j,+} d\xi_t^{j,+} - \lambda^{j,-} d\xi_t^{j,-} \right)$$

$$Y_t^i = y^i - \xi_t^{i,+} - \xi_t^{i,-} \quad \text{for } 1 \leq i \leq N$$

- $ightharpoonup F^i(m{X}_t,m{Y}_t)=x^i$ and $\lambda^{i,+}=\lambda^{i,-}=0$: rank-dependent SDE
 - "Up the River problem": Aldous (2002)
 - Stochastic portfolio: Fernholz (2002)
 - ▶ Atlas model ($\delta_1 = 1$, $\delta_2 = \cdots = \delta_N = 0$): Banner, Fernholz and Karatzas (2005), Ichiba, Karatzas and Shkolnikov (2013), Pal and Pitman (2008), Cabezas, Dembo and Sarantsev (2017), Tang and Tsai (2018)

References

Al Motairi, H. and Zervos, M. (2017). Irreversible capital accumulation with economic impact. Applied Mathematics & Optimization, 75(3), pp.525-551.

Aldous D (2002).

"Up the River" game story.

http://www.stat.berkeley.edu/aldous/Research/OP/river.pdf.

Banner, A.D., Fernholz, R. and Karatzas, I. (2005). Atlas models of equity markets.

The Annals of Applied Probability, 15(4), pp.2296-2330...

Beneš, V.E. and Shepp, L.A. and Witsenhausen, H.S. (1980). Some solvable stochastic control problemst.

Stochastics: An International Journal of Probability and Stochastic Processes 4.1 (1980): 39-83.

Cabezas, M., Dembo, A., Sarantvev, A. and Sidoravicius, V., (2017). Brownian particles with rank-dependent drifts: out-of-equilibrium behavior. arXiv preprint arXiv:1708.01918.

References

Dai, M. and Yi, F (2009).

Finite-horizon optimal investment with transaction costs: a parabolic double obstacle problem.

Journal of Differential Equations, 246(4), pp.1445-1469.

Davis, M.H. and Norman, A.R. (1990).

Portfolio selection with transaction costs.

Mathematics of operations research, 15(4), pp.676-713.

Fernholz, E.R. (2002).

Stochastic portfolio theory.

In Stochastic Portfolio Theory (pp. 1-24). Springer, New York, NY.

Guo, X. and Zervos, M. (2015).

Optimal execution with multiplicative price impact.

SIAM Journal on Financial Mathematics, 6(1), pp.281-306.

Ichiba, T., Karatzas, I. and Shkolnikov, M., (2013).

Strong solutions of stochastic equations with rank-based coefficients.

Probability Theory and Related Fields, 156(1-2), pp.229-248.

References

Kallsen, J. and Muhle-Karbe, J. (2010).

On using shadow prices in portfolio optimization with transaction costs.

The Annals of Applied Probability, 20(4), pp.1341-1358.

Karatzas, I. (1983).

A class of singular stochastic control problems.

Advances in Applied Probability, 15(2), 225-254.

Pal, S. and Pitman, J., (2008).

One-dimensional Brownian particle systems with rank-dependent drifts. The Annals of Applied Probability, 18(6), pp.2179-2207.

Shreve, S.E. and Soner, H.M. (1994).

Optimal investment and consumption with transaction costs.

The Annals of Applied Probability, pp.609-692.

Tang, W. and Tsai, L.C., (2018).

Optimal surviving strategy for drifted Brownian motions with absorption.

The Annals of Probability, 46(3), pp.1597-1650.

Williams, R.J. (1987).

Reflected Brownian motion with skew symmetric data in a polyhedral domain. *Probability Theory and Related Fields, 75(4), pp.459-485.*