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A price impact model

Consider an investor whose trades affect market prices:

I investment strategy: X = (X ↑t ,X
↓
t )t≥0

I X ↑t = # shares bought up to time t ≥ 0, X ↑0− , 0

I X ↓t = # shares sold up to time t ≥ 0, X ↓0− , 0

I X ↑, X ↓ predictable, nondecreasing, right-continuous
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A model with coupled bid-/ask-price dynamics

Bid and ask price dynamics BX , AX for strategy X = (X ↑,X ↓):

dAX
t = dPt + ηdX ↑t −

1

2
κ(AX

t − BX
t )dt

dBX
t = dPt − ηdX ↓t +

1

2
κ(AX

t − BX
t )dt

I dPt exogenous fundamental price shock given by continuous
semimartingale P (unaffected mid price process)

I η > 0: price impact factor (finite market depth)

I κ > 0: resilience rate (recovery rate)

Autonomous spread dynamics: ζXt = AX
t − BX

t satisfies

dζXt = η(dX ↑t + dX ↓t )− κζXt dt, ζX0− ≥ 0
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Model discussion

Model similar to . . .

I . . . Obizhaeva & Wang (2013), but we allow for both buying
and selling

I . . . Almgren & Chriss (2001), but our price impact depends
linear on trading volume, not trading rate

I . . . Roch & Soner (2013), but our bid and ask prices revert to
each other, not to a reference price

Model feature I:

I model captures Kyle’s (1985) three dimensions of illiquidity:
finite market depth, finite resilience (transient price impact),
market tightness (spread)
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Wealth dynamics

Investor’s wealth at time t described by:

I ϕX
t = number of shares currently held:

dϕX
t = dX ↑t − dX ↓t

I ξXt = amount of cash currently held:

dξXt = −(AX
t− +

1

2
η∆X ↑t )dX ↑t + (BX

t− −
1

2
η∆X ↓t )dX ↓t

I Liquidation value of current position:

Vt(X ) , ξXt +
1

2
(AX

t + BX
t )ϕX

t︸ ︷︷ ︸
book value

−
(

1

2
ζXt |ϕX

t |+
1

2
η(ϕX

t )2
)

︸ ︷︷ ︸
liquidation costs
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Liquidation wealth process

Lemma

We have the decomposition

Vt(X ) = v0− +

∫ t

0
ϕX
s dPs − Lt(X )

with liquidity costs Lt(X ) where

Lt(X ) ,
1

4η

(
η|ϕX

t |+ (ζXt − e−κtζX0−)
)2

+
1

2
|ϕX

t |e−κtζX0− +
η

4
(ϕX

0−)
2

+
1

2

∫
[0,t]

e−κsζX0−(dX
↑
s + dX ↓s ) +

κ

2η

∫ t

0

(ζXs− − e−κsζX0−)
2 ds.

In particular, Lt(X ) is convex in X and satisfies

Lt(X ) ≥ η

4
e−2κt(X ↑t + X ↓t )2 +

κη

2

∫ t

0

e−2κs(X ↑s + X ↓s )2 ds ≥ 0.

Model feature II: Model dynamics induce convex costs
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Optimal investment problem

Investor wants to maximize expected utility from terminal
liquidation wealth at time T > 0, i.e.,

Eu(VT (X )) = Eu
(
v0− +

∫ T

0
ϕX
t dPt − LT (X )

)
→ max

X=(X↑,X↓)

with utility function

u : R→ R strictly concave and increasing with u(∞) <∞.

Related literature:
Roch/Soner (’13), Gârleanu/Pedersen (’13, ’16),
Kallsen/Muhle-Karbe (’14), Guasoni/Weber (’15, ’16, ’17),
Soner/Vukelja (’16), Forde/Weber/Zhang (’16),
Moreau/Muhle-Karbe/Soner (’17), Cayé/Herdegen/Muhle-Karbe
(’17), Ekren/Muhle-Karbe (’17), Chandra/Papanicolaou (’17) . . .
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Existence and uniqueness of optimal strategies

Theorem

There exists a unique strategy X̂ = (X̂ ↑, X̂ ↓) such that
Eu(VT (X̂ )) ≥ Eu(VT (X )) for all strategies X = (X ↑,X ↓).

Proof’s main tools:

I convex compactness result for processes of finite variation
(Guasoni ’02)

I convexity of liquidity costs LT (X ) and continuity of the
liquidation wealth VT (X ) in X
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Illiquid Bachelier model with exponential utility

Simplest setting:

I Bachelier model: dPt = µdt + σdWt with µ, σ > 0

I exponential utility: u(x) = −e−αx with α > 0

Frictionless case: (η = ζX0− = 0)

Optimal strategy X̂ 0 is a deterministic buy-and-hold strategy

dX̂ 0,↑
t =

µ

ασ2
δ0(dt) and dX̂ 0,↓

t =
µ

ασ2
δT (dt)

Optimal share holdings: Constant Merton portfolio

ϕX̂ 0

t ≡
µ

ασ2
(0 ≤ t ≤ T )
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Optimal investment strategy

Proposition

The optimal investment strategy for the illiquid Bachelier model
with exponential utility is deterministic. It suffices to minimize
the convex cost functional

JT (X ) , LT (X ) +
ασ2

2

∫ T

0

(
ϕX
t −

µ

ασ2

)2
dt → min

X=(X↑,X↓)

Proof: Similar to Schied/Schöneborn/Tehranchi (2010).

 deterministic optimal tracking problem of frictionless optimal
Merton portfolio µ/(ασ2)

Model feature III: Problem can be solved explicitly
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Singular control via convex analysis

Lemma

For any two deterministic strategies X ,Y with the same initial
position ϕY

0− = ϕX
0− and initial spread ζ0 ≥ 0 we have

JT (Y )− JT (X ) ≥
∫
[0,T ]

%∇↑t JT (X )(dY ↑t − dX ↑t )

+

∫
[0,T ]

%∇↓t JT (X )(dY ↓t − dX ↓t )

with %∇↑JT (X ) and %∇↓JT (X ) given by

%∇↑,↓t JT (X ) =

∫ T

t

(
κe−κ(u−t)ζXu ± ασ2

(
ϕX
u −

µ

ασ2

))
du

± 1

2

(
η|ϕX

T |+ ζXT

)(
sign%(ϕX

T )± e−κ(T−t)
)
.
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Singular control via convex analysis

Lemma (First order conditions)

X̂ = (X̂ ↑, X̂ ↓) is optimal if the following conditions hold true:

I buy-subgradient %∇↑t JT (X̂ ) ≥ 0, with ’= 0’ on {dX̂ ↑t > 0},
I sell-subgradient %∇↓t JT (X̂ ) ≥ 0, with ’= 0’ on {dX̂ ↓t > 0}.

Obvious question: How to construct X̂ solving first order
conditions?
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State space

I Three dimensional state space

S , {(τ, ζ, ϕ) : τ ≥ 0, ζ ≥ 0, ϕ ∈ R} ⊂ R3,

with time to maturity τ , initial spread ζ, initial number of
shares ϕ.

I Denote by X̂ τ,ζ,ϕ the unique optimal strategy with problem
data (τ, ζ, ϕ) ∈ S , i.e.,

ζX̂
τ,ζ,ϕ

0− = ζ, ϕX̂ τ,ζ,ϕ
0− = ϕ.

I Describe evolution of optimally controlled state process

(τ − t, ζX̂
τ,ζ,ϕ

t , ϕX̂ τ,ζ,ϕ
t )0≤t≤τ ⊂ S .
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Buying-, selling-, waiting-region

Definition

We define

Rbuy/sell ,
{

(τ, ζ, ϕ) ∈ S : X̂ τ,ζ,ϕ satisfies %∇↑,↓0 Jτ (X̂ τ,ζ,ϕ) = 0

for some % > 0 and X̂ τ,ζ,ϕ,↑,↓
0 > 0

}
,

∂Rbuy/sell ,
{

(τ, ζ, ϕ) ∈ S : X̂ τ,ζ,ϕ satisfies %∇↑,↓0 Jτ (X̂ τ,ζ,ϕ) = 0

for some % > 0 and X̂ τ,ζ,ϕ,↑,↓
0 = 0

}
,

Rwait , S \(R̄buy ∪ R̄sell),

where R̄buy/sell , Rbuy/sell ∪ ∂Rbuy/sell.

Goal: Characterize free boundaries ∂Rbuy and ∂Rsell in S .
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Main result

Theorem

There are two continuous free boundary functions

φbuy(τ, ζ) < φsell(τ, ζ)

explicitly available such that

Rsell = {(τ, ζ, ϕ) ∈ S : ϕ > φsell(τ, ζ)},
∂Rsell = {(τ, ζ, ϕ) ∈ S : ϕ = φsell(τ, ζ)}

as well as

Rbuy = {(τ, ζ, ϕ) ∈ S : ϕ < φbuy(τ, ζ)},
∂Rbuy = {(τ, ζ, ϕ) ∈ S : ϕ = φbuy(τ, ζ)}.

In particular,

Rwait = {(τ, ζ, ϕ) ∈ S : φbuy(τ, ζ) < ϕ < φsell(τ, ζ)},
∂Rwait = ∂Rbuy ∪ ∂Rsell.
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Illustration: State space

Figure: State space S with time to maturity τ , spread ζ, number of
shares ϕ; Merton plane at level µ/(ασ2) = 10 (blue); boundary of
buying-region ∂Rbuy (green); boundary of selling-region ∂Rsell (red).
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Illustration: State space with optimal state processes

Figure: Evolution of optimally controlled state processes embedded in the
state space S . Dashed lines indicate waiting parts of the strategies; the
big dots represent the corresponding initial and final triplets (τ, ζ, ϕ) and
(0, ζ ′, 0) for some final spread value ζ ′.
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Illustration: Phenomenology of optimal trading trajectories
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Figure: Evolution of optimal share holdings for different initial problem
data (τ, ζ, ϕ) ∈ S as functions in time to maturity τ − t with 0 ≤ t ≤ τ .
The dots represent the initial position in the risky asset. The final
position is always zero. The grey line represents the Merton position
µ/(ασ2) = 10.
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Conclusions

I price impact model which accounts for finite market depth,
market tightness, finite resilience (transient price impact)

I coupled bid-/ask-price dynamics induce convex liquidity costs
on singular controls

I general existence and uniqueness result of optimal investment
strategies

I illiquid Bachelier model with exponential utility: resulting
singular control problem reduces to a deterministic optimal
tracking problem

I exploit convex analytic approach instead of more common
dynamic programming methods

I state space and optimal strategies can be constructed
explicitly

I surprisingly rich phenomenology of possible trajectories for the
optimal share holdings
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