Optimal investment with transient price impact

Moritz Voss

UC Santa Barbara

joint work with
Peter Bank

9th Western Conference in Mathematical Finance
USC, November 16 – 17, 2018
A price impact model

Consider an investor whose trades affect market prices:

- investment strategy: \(X = (X^\uparrow_t, X^\downarrow_t)_{t \geq 0} \)
- \(X^\uparrow_t = \# \) shares bought up to time \(t \geq 0 \), \(X^\uparrow_0 \triangleq 0 \)
- \(X^\downarrow_t = \# \) shares sold up to time \(t \geq 0 \), \(X^\downarrow_0 \triangleq 0 \)
- \(X^\uparrow, X^\downarrow \) predictable, nondecreasing, right-continuous
A model with coupled bid-/ask-price dynamics

Bid and ask price dynamics B^X, A^X for strategy $X = (X^\uparrow, X^\downarrow)$:

\[
\begin{align*}
\frac{dA^X_t}{dt} &= \frac{dP_t}{dt} + \eta dX^\uparrow_t - \frac{1}{2} \kappa (A^X_t - B^X_t) dt \\
\frac{dB^X_t}{dt} &= \frac{dP_t}{dt} - \eta dX^\downarrow_t + \frac{1}{2} \kappa (A^X_t - B^X_t) dt
\end{align*}
\]

- dP_t exogenous fundamental price shock given by continuous semimartingale P (unaffected mid price process)
- $\eta > 0$: price impact factor (finite market depth)
- $\kappa > 0$: resilience rate (recovery rate)

Autonomous spread dynamics: $\zeta^X_t = A^X_t - B^X_t$ satisfies

\[
\frac{d\zeta^X_t}{dt} = \eta (dX^\uparrow_t + dX^\downarrow_t) - \kappa \zeta^X_t dt, \quad \zeta^X_{0-} \geq 0
\]
Model discussion

Model similar to . . .

➤ . . . Obizhaeva & Wang (2013), but we allow for both buying and selling
➤ . . . Almgren & Chriss (2001), but our price impact depends linear on trading volume, not trading rate
➤ . . . Roch & Soner (2013), but our bid and ask prices revert to each other, not to a reference price

Model feature I:

➤ model captures Kyle’s (1985) three dimensions of illiquidity: finite market depth, finite resilience (transient price impact), market tightness (spread)
Wealth dynamics

Investor’s wealth at time t described by:

$\varphi_t^X = \text{number of shares currently held:}$

$$d\varphi_t^X = dX_t^\uparrow - dX_t^\downarrow$$

$\xi_t^X = \text{amount of cash currently held:}$

$$d\xi_t^X = -(A_t^X + \frac{1}{2}\eta\Delta X_t^\uparrow)dX_t^\uparrow + (B_t^X - \frac{1}{2}\eta\Delta X_t^\downarrow)dX_t^\downarrow$$

$\text{Liquidation value of current position:}$

$$V_t(X) \triangleq \xi_t^X + \frac{1}{2}(A_t^X + B_t^X)\varphi_t^X - \left(\frac{1}{2}\zeta_t^X|\varphi_t^X| + \frac{1}{2}\eta(\varphi_t^X)^2\right)$$

book value \hspace{0.5cm} liquidation costs
Lemma

We have the decomposition

\[V_t(X) = v_0 - \int_0^t \varphi_s^X dP_s - L_t(X) \]

with liquidity costs \(L_t(X) \) where

\[
L_t(X) \triangleq \frac{1}{4\eta} \left(\eta |\varphi_t^X| + (\zeta_t^X - e^{-\kappa t} \zeta_0^X) \right)^2 + \frac{1}{2} |\varphi_t^X| e^{-\kappa t} \zeta_0^X + \frac{\eta}{4} (\varphi_0^X)^2 \\
+ \frac{1}{2} \int_{[0,t]} e^{-\kappa s} \zeta_0^X (dX_s^\uparrow + dX_s^\downarrow) + \frac{\kappa}{2\eta} \int_0^t (\zeta_s^X - e^{-\kappa s} \zeta_0^X)^2 \, ds.
\]

In particular, \(L_t(X) \) is convex in \(X \) and satisfies

\[
L_t(X) \geq \frac{\eta}{4} e^{-2\kappa t} (X_t^\uparrow + X_t^\downarrow)^2 + \frac{\kappa \eta}{2} \int_0^t e^{-2\kappa s} (X_s^\uparrow + X_s^\downarrow)^2 \, ds \geq 0.
\]

Model feature II: Model dynamics induce convex costs
Optimal investment problem

Investor wants to maximize expected utility from terminal liquidation wealth at time \(T > 0 \), i.e.,

\[
\mathbb{E}u(V_T(X)) = \mathbb{E}u \left(v_0 - \int_0^T \varphi_t^X \, dP_t - L_T(X) \right) \to \max_{X=(X^+, X^-)}
\]

with utility function

\[
u : \mathbb{R} \to \mathbb{R} \text{ strictly concave and increasing with } u(\infty) < \infty.\]

Related literature:
Roch/Soner ('13), Gårleanu/Pedersen ('13, '16), Kallsen/Muhle-Karbe ('14), Guasoni/Weber ('15, '16, '17), Soner/Vukelja ('16), Forde/Weber/Zhang ('16), Moreau/Muhle-Karbe/Soner ('17), Cayé/Herdegen/Muhle-Karbe ('17), Ekren/Muhle-Karbe ('17), Chandra/Papanicolaou ('17) . . .
Existence and uniqueness of optimal strategies

Theorem

There exists a unique strategy $\hat{X} = (\hat{X}^\uparrow, \hat{X}^\downarrow)$ such that

$$E[u(V_T(\hat{X}))] \geq E[u(V_T(X))]$$

for all strategies $X = (X^\uparrow, X^\downarrow)$.

Proof’s main tools:

- convex compactness result for processes of finite variation (Guasoni ’02)
- convexity of liquidity costs $L_T(X)$ and continuity of the liquidation wealth $V_T(X)$ in X
Illiquid Bachelier model with exponential utility

Simplest setting:

- Bachelier model: \(dP_t = \mu dt + \sigma dW_t \) with \(\mu, \sigma > 0 \)
- exponential utility: \(u(x) = -e^{-\alpha x} \) with \(\alpha > 0 \)
Illiquid Bachelier model with exponential utility

Simplest setting:

- Bachelier model: \(dP_t = \mu dt + \sigma dW_t \) with \(\mu, \sigma > 0 \)
- exponential utility: \(u(x) = -e^{-\alpha x} \) with \(\alpha > 0 \)

Frictionless case: \((\eta = \zeta_{0-} = 0) \)

Optimal strategy \(\hat{X}^0 \) is a deterministic buy-and-hold strategy

\[
\begin{align*}
d\hat{X}^0_{t,\uparrow} &= \frac{\mu}{\alpha \sigma^2} \delta_0 (dt) \\
&\text{and} \\
d\hat{X}^0_{t,\downarrow} &= \frac{\mu}{\alpha \sigma^2} \delta_t (dt)
\end{align*}
\]

Optimal share holdings: Constant Merton portfolio

\[
\varphi_t \hat{X}^0 = \frac{\mu}{\alpha \sigma^2} \quad (0 \leq t \leq T)
\]
Proposition

The optimal investment strategy for the illiquid Bachelier model with exponential utility is deterministic. It suffices to minimize the convex cost functional

\[
J_T(X) \triangleq L_T(X) + \frac{\alpha \sigma^2}{2} \int_0^T \left(\varphi_t - \frac{\mu}{\alpha \sigma^2} \right)^2 dt \rightarrow \min_{X=(X^\uparrow, X^\downarrow)}
\]

Proof: Similar to Schied/Schöneborn/Tehranchi (2010).

\[\Rightarrow\] deterministic optimal tracking problem of frictionless optimal Merton portfolio \(\mu/(\alpha \sigma^2) \)

Model feature III: Problem can be solved explicitly
Singular control via convex analysis

Lemma

For any two deterministic strategies X, Y with the same initial position $\varphi^Y_0 = \varphi^X_0$ and initial spread $\zeta_0 \geq 0$ we have

$$J_T(Y) - J_T(X) \geq \int_{[0, T]} \rho \nabla^\uparrow_t J_T(X)(dY_t^\uparrow - dX_t^\uparrow)$$

$$+ \int_{[0, T]} \rho \nabla^\downarrow_t J_T(X)(dY_t^\downarrow - dX_t^\downarrow)$$

with $\rho \nabla^\uparrow J_T(X)$ and $\rho \nabla^\downarrow J_T(X)$ given by

$$\rho \nabla^\uparrow_t, \downarrow J_T(X) = \int_t^T \left(\kappa e^{-\kappa(u-t)} \zeta_u^X \pm \alpha \sigma^2 \left(\varphi_u^X - \frac{\mu}{\alpha \sigma^2} \right) \right) du$$

$$\pm \frac{1}{2} \left(\eta |\varphi_T^X| + \zeta_T^X \right) \left(\text{sign}_\rho(\varphi_T^X) \pm e^{-\kappa(T-t)} \right).$$
Singular control via convex analysis

Lemma (First order conditions)

\(\hat{X} = (\hat{X}^+, \hat{X}^-) \) is optimal if the following conditions hold true:

- **buy-subgradient** \(\partial \nabla_t^+ J_T(\hat{X}) \geq 0 \), with \(' = 0 \) on \(\{ d\hat{X}_t^+ > 0 \} \),
- **sell-subgradient** \(\partial \nabla_t^- J_T(\hat{X}) \geq 0 \), with \(' = 0 \) on \(\{ d\hat{X}_t^- > 0 \} \).

Obvious question: How to construct \(\hat{X} \) solving first order conditions?
State space

- Three dimensional state space

\[S \triangleq \{(\tau, \zeta, \varphi) : \tau \geq 0, \zeta \geq 0, \varphi \in \mathbb{R}\} \subset \mathbb{R}^3, \]

with time to maturity \(\tau \), initial spread \(\zeta \), initial number of shares \(\varphi \).

- Denote by \(\hat{X}^{\tau, \zeta, \varphi} \) the unique \textbf{optimal} strategy with problem data \((\tau, \zeta, \varphi) \in S \), i.e.,

\[\zeta_{0^{-}}^{\hat{X}^{\tau, \zeta, \varphi}} = \zeta, \quad \varphi_{0^{-}}^{\hat{X}^{\tau, \zeta, \varphi}} = \varphi. \]

- Describe evolution of optimally controlled state process

\[(\tau - t, \zeta_{t}^{\hat{X}^{\tau, \zeta, \varphi}}, \varphi_{t}^{\hat{X}^{\tau, \zeta, \varphi}})_{0 \leq t \leq \tau} \subset S. \]
Buying-, selling-, waiting-region

Definition

We define

\[\mathcal{R}_{\text{buy/sell}} \triangleq \left\{ (\tau, \zeta, \varphi) \in \mathcal{I} : \hat{X}^{\tau,\zeta,\varphi} \text{ satisfies } \varrho \nabla_0^{\uparrow,\downarrow} J_\tau(\hat{X}^{\tau,\zeta,\varphi}) = 0 \right\} , \]

for some \(\varrho > 0 \) and \(\hat{X}_0^{\tau,\zeta,\varphi,\uparrow,\downarrow} > 0 \),

\[\partial \mathcal{R}_{\text{buy/sell}} \triangleq \left\{ (\tau, \zeta, \varphi) \in \mathcal{I} : \hat{X}^{\tau,\zeta,\varphi} \text{ satisfies } \varrho \nabla_0^{\uparrow,\downarrow} J_\tau(\hat{X}^{\tau,\zeta,\varphi}) = 0 \right\} , \]

for some \(\varrho > 0 \) and \(\hat{X}_0^{\tau,\zeta,\varphi,\uparrow,\downarrow} = 0 \),

\[\mathcal{R}_{\text{wait}} \triangleq \mathcal{I} \setminus (\mathcal{R}_{\text{buy}} \cup \mathcal{R}_{\text{sell}}) , \]

where \(\mathcal{R}_{\text{buy/sell}} \triangleq \mathcal{R}_{\text{buy/sell}} \cup \partial \mathcal{R}_{\text{buy/sell}} \).

Goal: Characterize free boundaries \(\partial \mathcal{R}_{\text{buy}} \) and \(\partial \mathcal{R}_{\text{sell}} \) in \(\mathcal{I} \).
Main result

Theorem

There are two continuous free boundary functions

\[\phi_{\text{buy}}(\tau, \zeta) < \phi_{\text{sell}}(\tau, \zeta) \]

explicitly available such that

\[R_{\text{sell}} = \{(\tau, \zeta, \varphi) \in \mathcal{I} : \varphi > \phi_{\text{sell}}(\tau, \zeta)\} \]
\[\partial R_{\text{sell}} = \{(\tau, \zeta, \varphi) \in \mathcal{I} : \varphi = \phi_{\text{sell}}(\tau, \zeta)\} \]

as well as

\[R_{\text{buy}} = \{(\tau, \zeta, \varphi) \in \mathcal{I} : \varphi < \phi_{\text{buy}}(\tau, \zeta)\} \]
\[\partial R_{\text{buy}} = \{(\tau, \zeta, \varphi) \in \mathcal{I} : \varphi = \phi_{\text{buy}}(\tau, \zeta)\} \]

In particular,

\[R_{\text{wait}} = \{(\tau, \zeta, \varphi) \in \mathcal{I} : \phi_{\text{buy}}(\tau, \zeta) < \varphi < \phi_{\text{sell}}(\tau, \zeta)\} \]
\[\partial R_{\text{wait}} = \partial R_{\text{buy}} \cup \partial R_{\text{sell}}. \]
Figure: State space \mathcal{S} with time to maturity τ, spread ζ, number of shares φ; Merton plane at level $\mu/(\alpha\sigma^2) = 10$ (blue); boundary of buying-region ∂R_{buy} (green); boundary of selling-region ∂R_{sell} (red).
Illustration: State space with optimal state processes

Figure: Evolution of optimally controlled state processes embedded in the state space S. Dashed lines indicate waiting parts of the strategies; the big dots represent the corresponding initial and final triplets (τ, ζ, φ) and $(0, \zeta', 0)$ for some final spread value ζ'.
Figure: Evolution of optimal share holdings for different initial problem data \((\tau, \zeta, \varphi) \in \mathcal{S}\) as functions in time to maturity \(\tau - t\) with \(0 \leq t \leq \tau\). The dots represent the initial position in the risky asset. The final position is always zero. The grey line represents the Merton position \(\mu/(\alpha \sigma^2) = 10\).
Conclusions

- price impact model which accounts for finite market depth, market tightness, finite resilience (transient price impact)
- coupled bid-/ask-price dynamics induce convex liquidity costs on singular controls
- general existence and uniqueness result of optimal investment strategies
- illiquid Bachelier model with exponential utility: resulting singular control problem reduces to a deterministic optimal tracking problem
- exploit convex analytic approach instead of more common dynamic programming methods
- state space and optimal strategies can be constructed explicitly
- surprisingly rich phenomenology of possible trajectories for the optimal share holdings
Reference

Optimal investment with transient price impact
with Peter Bank

Reference

Optimal investment with transient price impact
with Peter Bank

Thank you very much!