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A price impact model

Consider an investor whose trades affect market prices:
> investment strategy: X = (X:,Xti)tzo
> XtT = # shares bought up to time t > 0, XOT_ 20
» X} = # shares sold up to time t > 0, Xy 20

» X1, X' predictable, nondecreasing, right-continuous
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A model with coupled bid-/ask-price dynamics

Bid and ask price dynamics BX, AX for strategy X = (X1, X*):

1
dAY = dP; +ndX] — 5H(A§< — BX)dt

1
dBX = dP;, — ndX} + Em(Af — BX)dt

» dP; exogenous fundamental price shock given by continuous
semimartingale P (unaffected mid price process)

» 1) > 0: price impact factor (finite market depth)

» k> 0: resilience rate (recovery rate)

Autonomous spread dynamics: (X = AX — BX satisfies

d¢X = n(dX; + X)) — w¢Xdt, ¢ >0



Model discussion

Model similar to ...

» ...Obizhaeva & Wang (2013), but we allow for both buying
and selling

» ...Almgren & Chriss (2001), but our price impact depends
linear on trading volume, not trading rate

> ...Roch & Soner (2013), but our bid and ask prices revert to
each other, not to a reference price

Model feature I:

» model captures Kyle's (1985) three dimensions of illiquidity:
finite market depth, finite resilience (transient price impact),
market tightness (spread)



Wealth dynamics

Investor's wealth at time t described by:

» X = number of shares currently held:

dof = dx] — dx;
» ¢X = amount of cash currently held:
deX = —(AX + %UAXJ Yax{ + (BX — %mx})dx#
» Liquidation value of current position:

1 1 1
Vi) 2 6+ (8% + B¢ - (310K1+ 00

book value

liquidation costs



Liquidation wealth process

Lemma

We have the decomposition
t
Vi(X) = vo_ + / X dPs — L¢(X)
0

with liquidity costs L;(X) where

Le(X) é@ (nlw?l +(¢F—e tCS(_)) + 5lerle G- + %(sOoX_)2
1

2

In particular, L:(X) is convex in X and satisfies

t
Le(X) 2 e (X + X} + %/ e 5(X] + X$)? ds > 0.
0

Model feature Il: Model dynamics induce convex costs

t
41 / e (aX] + dXd) + 2 / (X — e ¢ ds.
[0,t] 2n Jo
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Optimal investment problem

Investor wants to maximize expected utility from terminal
liquidation wealth at time T > 0, i.e.,

-
— X _
Eu(V7(X)) =Eu <vo_ + /0 v dPy LT(X)> — x:?;?,(xi)

with utility function

u: R — R strictly concave and increasing with u(c0) < co.

Related literature:

Roch/Soner ('13), Garleanu/Pedersen ('13, '16),
Kallsen/Muhle-Karbe ('14), Guasoni/Weber ('15, '16, '17),
Soner/Vukelja ('16), Forde/Weber/Zhang ('16),
Moreau/Muhle-Karbe/Soner ('17), Cayé/Herdegen/Muhle-Karbe
('17), Ekren/Muhle-Karbe ('17), Chandra/Papanicolaou ('17) ...
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Existence and uniqueness of optimal strategies

Theorem

There exists a unique strategy X = (X1, X}) such that
Eu(V7(X)) > Eu(V7(X)) for all strategies X = (XT, X}).

Proof’'s main tools:

» convex compactness result for processes of finite variation
(Guasoni '02)

» convexity of liquidity costs L+(X) and continuity of the
liquidation wealth V7(X) in X



llliquid Bachelier model with exponential utility

Simplest setting:
» Bachelier model: dP; = pdt + odW; with p,0 >0

» exponential utility: u(x) = —e™** with a >0
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llliquid Bachelier model with exponential utility

Simplest setting:
» Bachelier model: dP; = pdt + odW; with p,0 >0

» exponential utility: u(x) = —e™** with a >0

Frictionless case: ( = (£ = 0)
Optimal strategy X0 is a deterministic buy-and-hold strategy

dXoT = édo(dt) and dX%' = éér(dt)

Optimal share holdings: Constant Merton portfolio

X0 _
o ) (0<t<T)
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Optimal investment strategy

Proposition

The optimal investment strategy for the illiquid Bachelier model
with exponential utility is deterministic. It suffices to minimize
the convex cost functional

2

T 2
Jr(X)& L X+O‘U/ X E ) gt i
riX) X 2 Jo <¢t ) x:(n)llTrjxi)

Proof: Similar to Schied/Schéneborn/Tehranchi (2010). O

~ deterministic optimal tracking problem of frictionless optimal
Merton portfolio 11/(ac?)

Model feature IlI: Problem can be solved explicitly



Singular control via convex analysis

Lemma
For any two deterministic strategies X, Y with the same initial
position oY = oX  and initial spread (o > 0 we have

Ir(Y) = Jr(X) = / oy} Jr(X)(dY] — aX{)
[0,T]

+ / oVt Jr(X)(dYE — dXH)
[0,T]

with ¢V J1(X) and °V*Jr(X) given by

QVI’iJT(X) :/tT (me*”(”*t)gl)f + ao? (goff — ﬁ)) du

£ 2 (nle¥] + ) (signy (%) & (T,
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Singular control via convex analysis

Lemma (First order conditions)

X = (X1, X} is optimal if the following conditions hold true:
> buy-subgradient ¢V} J7(X) > 0, with '= 0" on {dX] > 0},
> sell-subgradient °ViJ7(X) > 0, with = 0" on {dX} > 0}.

Obvious question: How to construct X solving first order
conditions?
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State space

» Three dimensional state space
S 2 {(1,¢,p) T >0, >0,p € R} C R,

with time to maturity 7, initial spread ¢, initial number of
shares .

» Denote by X7¢¢ the unique optimal strategy with problem
data (7., ¢) € .7, e,

X6

X750
QT =¢ el =

» Describe evolution of optimally controlled state process

X 76 XT>C®
(T - t? Cte< 7()0{ )OStST C fy‘

12 /19



Buying-, selling-, waiting-region

Definition

We define
Ry Jsell = {(T, ¢, ) €. XT5¥ satisfies Qvg’iJT()A(T’C"p) =0
for some ¢ > 0 and Xj“# " > 0},
Ry sell = {(T, ¢, ) €. XT5¥ satisfies 9V3’¢JT()A(T’<’“”) =0
for some ¢ > 0 and Xj“#" = O},

Rwait = S \(Prouy U Fsen)s

2 A
where %buy/sell - ‘%buy/sell U a‘%buy/sell-

Goal: Characterize free boundaries 0%},,, and 0% in ..
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Main result
Theorem

There are two continuous free boundary functions

Pbuy (7, ) < Bsen (7 ¢)
explicitly available such that

%sell - {(T7 C7 (19) EF ¢ 2 > (bsell(’rv C)}7
0Zsen = {(7,¢,9) € S 1 ¢ = gsen(7,C) }

as well as

%buy = {(Tv<790) EF ¢ p < d)buy(TaC)}v
8<@buy — {(Ta C7 99) S & Y = (bbuy(Ta C)}

In particular,

%wait - {(Tv <7 90) SR ¢buy(77 C) << ¢Sell(77 C)}a
8<%wait - 8%buy ) a<%sell-
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lllustration: State space

Figure: State space . with time to maturity 7, spread ¢, number of
shares ¢; Merton plane at level 1/(ac?) = 10 (blue); boundary of
buying-region 0%yuy (green); boundary of selling-region 0%se (red).
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lllustration: State space with optimal state processes

¢
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Figure: Evolution of optimally controlled state processes embedded in the
state space .. Dashed lines indicate waiting parts of the strategies; the

big dots represent the corresponding initial and final triplets (7, ¢, ) and
(0,¢’,0) for some final spread value ¢’.
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lllustration: Phenomenology of optimal trading trajectories

20~
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° /

Figure: Evolution of optimal share holdings for different initial problem

5L

data (7, ¢, @) € . as functions in time to maturity 7 — ¢t with 0 < ¢t < 7.

The dots represent the initial position in the risky asset. The final
position is always zero. The grey line represents the Merton position
u/(ac?) = 10.
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Conclusions

>

price impact model which accounts for finite market depth,
market tightness, finite resilience (transient price impact)
coupled bid-/ask-price dynamics induce convex liquidity costs
on singular controls

general existence and uniqueness result of optimal investment
strategies

illiquid Bachelier model with exponential utility: resulting
singular control problem reduces to a deterministic optimal
tracking problem

exploit convex analytic approach instead of more common
dynamic programming methods

state space and optimal strategies can be constructed
explicitly

surprisingly rich phenomenology of possible trajectories for the
optimal share holdings
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