Optimal investment with transient price impact

Moritz Voss

UC Santa Barbara

joint work with Peter Bank

9th Western Conference in Mathematical Finance USC, November 16 – 17, 2018 Consider an investor whose trades affect market prices:

- investment strategy: $X = (X_t^{\uparrow}, X_t^{\downarrow})_{t \geq 0}$
- $X_t^{\uparrow} = \#$ shares bought up to time $t \ge 0$, $X_{0-}^{\uparrow} \triangleq 0$
- $X_t^{\downarrow} = \#$ shares sold up to time $t \ge 0$, $X_{0-}^{\downarrow} \triangleq 0$
- ▶ X^{\uparrow} , X^{\downarrow} predictable, nondecreasing, right-continuous

A model with coupled bid-/ask-price dynamics

Bid and ask price dynamics B^X , A^X for strategy $X = (X^{\uparrow}, X^{\downarrow})$:

$$dA_t^X = dP_t + \eta dX_t^{\uparrow} - \frac{1}{2}\kappa(A_t^X - B_t^X)dt$$
$$dB_t^X = dP_t - \eta dX_t^{\downarrow} + \frac{1}{2}\kappa(A_t^X - B_t^X)dt$$

- dP_t exogenous fundamental price shock given by continuous semimartingale P (unaffected mid price process)
- $\eta > 0$: price impact factor (finite market depth)
- $\kappa > 0$: resilience rate (recovery rate)

Autonomous spread dynamics: $\zeta_t^X = A_t^X - B_t^X$ satisfies

$$d\zeta_t^X = \eta (dX_t^{\uparrow} + dX_t^{\downarrow}) - \kappa \zeta_t^X dt, \quad \zeta_{0-}^X \ge 0$$

Model discussion

Model similar to ...

- ... Obizhaeva & Wang (2013), but we allow for both buying and selling
- ... Almgren & Chriss (2001), but our price impact depends linear on trading volume, not trading rate
- ... Roch & Soner (2013), but our bid and ask prices revert to each other, not to a reference price

Model feature I:

 model captures Kyle's (1985) three dimensions of illiquidity: finite market depth, finite resilience (transient price impact), market tightness (spread)

Wealth dynamics

Investor's wealth at time t described by:

• φ_t^{χ} = number of shares currently held:

$$d\varphi_t^X = dX_t^{\uparrow} - dX_t^{\downarrow}$$

• ξ_t^X = amount of cash currently held:

$$d\xi_t^X = -(A_{t-}^X + \frac{1}{2}\eta\Delta X_t^{\uparrow})dX_t^{\uparrow} + (B_{t-}^X - \frac{1}{2}\eta\Delta X_t^{\downarrow})dX_t^{\downarrow}$$

Liquidation value of current position:

$$V_t(X) \triangleq \underbrace{\xi_t^X + \frac{1}{2}(A_t^X + B_t^X)\varphi_t^X}_{\text{book value}} - \underbrace{\left(\frac{1}{2}\zeta_t^X|\varphi_t^X| + \frac{1}{2}\eta(\varphi_t^X)^2\right)}_{\text{liquidation costs}}$$

Liquidation wealth process

Lemma

We have the decomposition

$$V_t(X) = v_{0-} + \int_0^t \varphi_s^X \, dP_s - L_t(X)$$

with liquidity costs $L_t(X)$ where

$$\begin{split} L_t(X) &\triangleq \frac{1}{4\eta} \left(\eta |\varphi_t^X| + (\zeta_t^X - e^{-\kappa t} \zeta_{0-}^X) \right)^2 + \frac{1}{2} |\varphi_t^X| e^{-\kappa t} \zeta_{0-}^X + \frac{\eta}{4} (\varphi_{0-}^X)^2 \\ &+ \frac{1}{2} \int_{[0,t]} e^{-\kappa s} \zeta_{0-}^X (dX_s^\uparrow + dX_s^\downarrow) + \frac{\kappa}{2\eta} \int_0^t (\zeta_{s-}^X - e^{-\kappa s} \zeta_{0-}^X)^2 \, ds. \end{split}$$

In particular, $L_t(X)$ is convex in X and satisfies

$$L_t(X) \geq \frac{\eta}{4} e^{-2\kappa t} (X_t^{\uparrow} + X_t^{\downarrow})^2 + \frac{\kappa \eta}{2} \int_0^t e^{-2\kappa s} (X_s^{\uparrow} + X_s^{\downarrow})^2 \, ds \geq 0.$$

Model feature II: Model dynamics induce convex costs

Optimal investment problem

Investor wants to maximize expected utility from terminal liquidation wealth at time T > 0, i.e.,

$$\mathbb{E}u(V_{\mathcal{T}}(X)) = \mathbb{E}u\left(v_{0-} + \int_0^T \varphi_t^X dP_t - L_{\mathcal{T}}(X)\right) \to \max_{X = (X^{\uparrow}, X^{\downarrow})}$$

with utility function

 $u: \mathbb{R} \to \mathbb{R}$ strictly concave and increasing with $u(\infty) < \infty$.

Related literature:

Roch/Soner ('13), Gârleanu/Pedersen ('13, '16), Kallsen/Muhle-Karbe ('14), Guasoni/Weber ('15, '16, '17), Soner/Vukelja ('16), Forde/Weber/Zhang ('16), Moreau/Muhle-Karbe/Soner ('17), Cayé/Herdegen/Muhle-Karbe ('17), Ekren/Muhle-Karbe ('17), Chandra/Papanicolaou ('17) ...

Existence and uniqueness of optimal strategies

Theorem

There exists a unique strategy $\hat{X} = (\hat{X}^{\uparrow}, \hat{X}^{\downarrow})$ such that $\mathbb{E}u(V_T(\hat{X})) \ge \mathbb{E}u(V_T(X))$ for all strategies $X = (X^{\uparrow}, X^{\downarrow})$.

Proof's main tools:

- convex compactness result for processes of finite variation (Guasoni '02)
- ► convexity of liquidity costs L_T(X) and continuity of the liquidation wealth V_T(X) in X

Illiquid Bachelier model with exponential utility

Simplest setting:

- ▶ Bachelier model: $dP_t = \mu dt + \sigma dW_t$ with $\mu, \sigma > 0$
- exponential utility: $u(x) = -e^{-\alpha x}$ with $\alpha > 0$

Illiquid Bachelier model with exponential utility

Simplest setting:

- ▶ Bachelier model: $dP_t = \mu dt + \sigma dW_t$ with $\mu, \sigma > 0$
- exponential utility: $u(x) = -e^{-\alpha x}$ with $\alpha > 0$

Frictionless case: $(\eta = \zeta_{0-}^{\chi} = 0)$ Optimal strategy \hat{X}^0 is a deterministic buy-and-hold strategy

$$d\hat{X}_t^{0,\uparrow} = rac{\mu}{lpha\sigma^2}\delta_0(dt) \quad ext{and} \quad d\hat{X}_t^{0,\downarrow} = rac{\mu}{lpha\sigma^2}\delta_{\mathcal{T}}(dt)$$

Optimal share holdings: Constant Merton portfolio

$$arphi_t^{\hat{X}^0}\equivrac{\mu}{lpha\sigma^2}\qquad (0\leq t\leq T)$$

Optimal investment strategy

Proposition

The optimal investment strategy for the illiquid Bachelier model with exponential utility is **deterministic**. It suffices to minimize the convex cost functional

$$J_{T}(X) \triangleq L_{T}(X) + \frac{\alpha \sigma^{2}}{2} \int_{0}^{T} \left(\varphi_{t}^{X} - \frac{\mu}{\alpha \sigma^{2}}\right)^{2} dt \to \min_{X = (X^{\uparrow}, X^{\downarrow})}$$

Proof: Similar to Schied/Schöneborn/Tehranchi (2010).

→ deterministic **optimal tracking problem** of frictionless optimal Merton portfolio $\mu/(\alpha\sigma^2)$

Model feature III: Problem can be solved explicitly

Singular control via convex analysis

Lemma

For any two deterministic strategies X, Y with the same initial position $\varphi_{0-}^{Y} = \varphi_{0-}^{X}$ and initial spread $\zeta_0 \ge 0$ we have

$$egin{aligned} J_{\mathcal{T}}(Y) - J_{\mathcal{T}}(X) &\geq \int_{[0,\mathcal{T}]} {}^{arrho}
abla^{\uparrow}_t J_{\mathcal{T}}(X) (dY_t^{\uparrow} - dX_t^{\uparrow}) \ &+ \int_{[0,\mathcal{T}]} {}^{arrho}
abla^{\downarrow}_t J_{\mathcal{T}}(X) (dY_t^{\downarrow} - dX_t^{\downarrow}) \end{aligned}$$

with ${}^{\varrho}\nabla^{\uparrow}J_{T}(X)$ and ${}^{\varrho}\nabla^{\downarrow}J_{T}(X)$ given by

$${}^{\varrho} \nabla_{t}^{\uparrow,\downarrow} J_{T}(X) = \int_{t}^{T} \left(\kappa e^{-\kappa(u-t)} \zeta_{u}^{X} \pm \alpha \sigma^{2} \left(\varphi_{u}^{X} - \frac{\mu}{\alpha \sigma^{2}} \right) \right) du$$
$$\pm \frac{1}{2} \left(\eta |\varphi_{T}^{X}| + \zeta_{T}^{X} \right) \left(\operatorname{sign}_{\varrho}(\varphi_{T}^{X}) \pm e^{-\kappa(T-t)} \right).$$

Singular control via convex analysis

Lemma (First order conditions)

 $\hat{X} = (\hat{X}^{\uparrow}, \hat{X}^{\downarrow})$ is optimal if the following conditions hold true:

- buy-subgradient ${}^{\varrho} \nabla_t^{\uparrow} J_T(\hat{X}) \ge 0$, with '=0' on $\{d\hat{X}_t^{\uparrow} > 0\}$,
- sell-subgradient ${}^{\varrho} \nabla_t^{\downarrow} J_T(\hat{X}) \ge 0$, with '=0' on $\{d\hat{X}_t^{\downarrow} > 0\}$.

Obvious question: How to construct \hat{X} solving first order conditions?

State space

Three dimensional state space

 $\mathscr{S} \triangleq \{(\tau,\zeta,\varphi): \tau \geq 0, \zeta \geq 0, \varphi \in \mathbb{R}\} \subset \mathbb{R}^3,$

with time to maturity τ , initial spread ζ , initial number of shares φ .

Denote by X̂^{τ,ζ,φ} the unique optimal strategy with problem data (τ, ζ, φ) ∈ 𝒴, i.e.,

$$\zeta_{0-}^{\hat{X}^{\tau,\zeta,\varphi}} = \zeta, \quad \varphi_{0-}^{\hat{X}^{\tau,\zeta,\varphi}} = \varphi.$$

Describe evolution of optimally controlled state process

$$(au-t,\zeta_t^{\hat{X}^{ au,\zeta,arphi}},arphi_t^{\hat{X}^{ au,\zeta,arphi}})_{0\leq t\leq au}\subset \mathscr{S}.$$

Buying-, selling-, waiting-region

$$\begin{split} & \text{Definition} \\ & \text{We define} \\ & \mathscr{R}_{\text{buy/sell}} \triangleq \Big\{ (\tau, \zeta, \varphi) \in \mathscr{S} : \hat{X}^{\tau, \zeta, \varphi} \text{ satisfies } {}^{\varrho} \nabla_{0}^{\uparrow, \downarrow} J_{\tau} (\hat{X}^{\tau, \zeta, \varphi}) = 0 \\ & \text{ for some } \varrho > 0 \text{ and } \hat{X}_{0}^{\tau, \zeta, \varphi, \uparrow, \downarrow} > 0 \Big\}, \\ & \partial \mathscr{R}_{\text{buy/sell}} \triangleq \Big\{ (\tau, \zeta, \varphi) \in \mathscr{S} : \hat{X}^{\tau, \zeta, \varphi} \text{ satisfies } {}^{\varrho} \nabla_{0}^{\uparrow, \downarrow} J_{\tau} (\hat{X}^{\tau, \zeta, \varphi}) = 0 \\ & \text{ for some } \varrho > 0 \text{ and } \hat{X}_{0}^{\tau, \zeta, \varphi, \uparrow, \downarrow} = 0 \Big\}, \\ & \mathscr{R}_{\text{wait}} \triangleq \mathscr{S} \setminus (\bar{\mathscr{R}}_{\text{buy}} \cup \bar{\mathscr{R}}_{\text{sell}}), \\ \end{split}$$

Goal: Characterize free boundaries $\partial \mathscr{R}_{buy}$ and $\partial \mathscr{R}_{sell}$ in \mathscr{S} .

Main result

Theorem

There are two continuous free boundary functions

 $\phi_{\mathrm{buy}}(\tau,\zeta) < \phi_{\mathrm{sell}}(\tau,\zeta)$

explicitly available such that

$$\mathcal{R}_{\text{sell}} = \{ (\tau, \zeta, \varphi) \in \mathscr{S} : \varphi > \phi_{\text{sell}}(\tau, \zeta) \}_{\text{sell}} \\ \partial \mathcal{R}_{\text{sell}} = \{ (\tau, \zeta, \varphi) \in \mathscr{S} : \varphi = \phi_{\text{sell}}(\tau, \zeta) \}$$

as well as

$$\mathcal{R}_{\text{buy}} = \{(\tau, \zeta, \varphi) \in \mathscr{S} : \varphi < \phi_{\text{buy}}(\tau, \zeta)\},\\ \partial \mathcal{R}_{\text{buy}} = \{(\tau, \zeta, \varphi) \in \mathscr{S} : \varphi = \phi_{\text{buy}}(\tau, \zeta)\}.$$

In particular,

$$\mathscr{R}_{\mathrm{wait}} = \{(\tau, \zeta, \varphi) \in \mathscr{S} : \phi_{\mathrm{buy}}(\tau, \zeta) < \varphi < \phi_{\mathrm{sell}}(\tau, \zeta)\},\ \partial \mathscr{R}_{\mathrm{wait}} = \partial \mathscr{R}_{\mathrm{buy}} \cup \partial \mathscr{R}_{\mathrm{sell}}.$$

Illustration: State space

Figure: State space \mathscr{S} with time to maturity τ , spread ζ , number of shares φ ; Merton plane at level $\mu/(\alpha\sigma^2) = 10$ (blue); boundary of buying-region $\partial \mathscr{R}_{buy}$ (green); boundary of selling-region $\partial \mathscr{R}_{sell}$ (red).

Illustration: State space with optimal state processes

Figure: Evolution of optimally controlled state processes embedded in the state space \mathscr{S} . Dashed lines indicate waiting parts of the strategies; the big dots represent the corresponding initial and final triplets (τ, ζ, φ) and $(0, \zeta', 0)$ for some final spread value ζ' .

Illustration: Phenomenology of optimal trading trajectories

Figure: Evolution of optimal share holdings for different initial problem data $(\tau, \zeta, \varphi) \in \mathscr{S}$ as functions in time to maturity $\tau - t$ with $0 \le t \le \tau$. The dots represent the initial position in the risky asset. The final position is always zero. The grey line represents the Merton position $\mu/(\alpha\sigma^2) = 10$.

Conclusions

- price impact model which accounts for finite market depth, market tightness, finite resilience (transient price impact)
- coupled bid-/ask-price dynamics induce convex liquidity costs on singular controls
- general existence and uniqueness result of optimal investment strategies
- illiquid Bachelier model with exponential utility: resulting singular control problem reduces to a deterministic optimal tracking problem
- exploit convex analytic approach instead of more common dynamic programming methods
- state space and optimal strategies can be constructed explicitly
- surprisingly rich phenomenology of possible trajectories for the optimal share holdings

Reference

Optimal investment with transient price impact with Peter Bank Preprint on arXiv:1804.07392.

Reference

Optimal investment with transient price impact with Peter Bank Preprint on arXiv:1804.07392.

Thank you very much!