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Stochastic Storage: An optimal switching problem

@ A storage problem has two key components:

o Stochastic Risk factors (autonomous dynamics).
o An inventory variable (fully controlled).

e Dynamics of the inventory is controlled via storage regimes (typically
finite, > 2).

@ In comparison, optimal stopping (American option pricing) has only
two regimes: {continue, stop} and stochastic factors.
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Stochastic Storage: An optimal switching problem

@ A storage problem has two key components:

o Stochastic Risk factors (autonomous dynamics).
o An inventory variable (fully controlled).

e Dynamics of the inventory is controlled via storage regimes (typically
finite, > 2).

@ In comparison, optimal stopping (American option pricing) has only
two regimes: {continue, stop} and stochastic factors.

In today's talk we will discuss:

@ A new modular algorithm (and its features) for optimal switching,
combining Design of Experiments with Machine learning.

@ Gaussian Process as a "basis-free” method for approximating
continuation value.
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Optimal switching problems

Gas storage valuation: A classic example

@ Gas prices as stochastic factor with dynamics
Ptk+1 = Ptk + b(tk, Ptk)At + O'(tk, Ptk) AWtk-
o Inventory variable: Iy, ., = Iy, + a(cy,) At, Iy, € [0, hnax)-

e Control ¢, represents rate of injection/withdrawal or holding, fully
determined by storage regime my,,, € {inject, withdraw, hold}.

o Objective: Create a policy my, ., = M(tx, Py, I, , my,) which
maximizes the expected profit v(ty, Py, It,, my,) in the horizon [0, T].
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Optimal switching problems

Gas storage valuation: A classic example

@ Gas prices as stochastic factor with dynamics
Pt... = Py, + b(ti, Py, )At + o(ty, Py, ) AW, .

o Inventory variable: Iy, ., = Iy, + a(cy,) At, Iy, € [0, hnax)-

e Control ¢, represents rate of injection/withdrawal or holding, fully
determined by storage regime my,,, € {inject, withdraw, hold}.

o Objective: Create a policy my, ., = M(tx, Py, I, , my,) which
maximizes the expected profit v(ty, Py, It,, my,) in the horizon [0, T].

Microgrid control
@ Electric load and renewable output as stochastic factors.

o Battery storage system as inventory, controlled via backup diesel
generator.

@ Objective: Create a policy to match demand and supply of electricity
and maximize the negative expected cost.
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Value Function and DPE for Gas storage

@ Value Function V(t, Py, Iy, my,) =

SUPE [Z e ts tk Pts’ mfs’ mts+1) + eir(T tk)W(’DT’ IT)‘ Ptk’ Itk? mtk] ’

my,

A

where 7 incorporates the revenue and the switching cost.
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SUPE [Z e ts tk Pts’ mfs’ mts+1) + eir(T tk)W(’DT’ IT)‘ Ptk’ Itk? mtk] ’
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where 7 incorporates the revenue and the switching cost.

@ Dynamic Programming Equation

V(tkv Pth /tk7 mtk) = ,Tea}(E |:7TA(Ptk7 My, m) + e—rAt V(tk+17 Ptk+17 /tk+17 m)

Ptk]
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Value Function and DPE for Gas storage

@ Value Function V(t, Py, Iy, my,) =

SUPE [Z e ts tk Pts’ mfs’ mts+1) + eir(T tk)W(’DT’ IT)‘ Ptk’ Itk? mtk] ’

my,

A

where 7 incorporates the revenue and the switching cost.

@ Dynamic Programming Equation

V(tkv Pth /tk7 mtk) = ,Tea}(E |:7TA(Ptk7 My, m) + e—rAt V(tk+17 Ptk+17 /tk+17 m)

Ptk]
@ Optimal Control
m*(tx, P, 1, m) = arg max;c ; {7r (P,m,j)+ e ™tq(t, P, + a(ce (J))At,))},

where Continuation Value q(tx, P, I, m) :== E [V(tiy1, Py, |, m)| Py, = P]
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A picture is worth a thousand words . ..

---Residual demand
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A pathwise trajectory for two examples

Gas Storage
@ Buy low and sell high.
Microgrid
@ Switch ON/OFF the generator to match demand and charge battery.
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Control Maps
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Optimal Policy

How to efficiently estimate the maps m*(P, I, m)?
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Contributions

@ A new algorithm Dynamic Emulation Algorithm(DEA)
o Flexible modular template by reformulating optimal switching problem
as recursive statistical learning.
e Memory efficient and Scalable via “smart” simulation/regressions.
@ Several new simulation designs which are dynamic, explores the space
and exploits the distributional content.

@ Gaussian Process Regression: a non-parametric tool for approximating
the continuation function q(tx, -, -, m)
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Outline

© Dynamic Emulation Algorithm
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Traditional Implementation

Demand
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Simulate paths and | Evaluate .
sett=T-—1 V(t+1,---)

Regression for
estimating q(t,-, -, ")

@ Paths for the exogenous process is simulated and stored for [0,T].

@ Controlled trajectory I; cannot be simulated. So, replicate the
exogenous process P;/X; for all possible values of /;.

@ Non-parametric regression methods are very slow since we need

~ 10* paths for reasonable estimation.
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Dynamic Emulation Algorithm (DEA)
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@ Stochastic simulation for sequential learning of gq.

@ Both design and regression affects the quality of the solution.
@ “Smart” design @ Improved learning.

Aditya Maheshwari (UCSB)

Simulation Methods for Stochastic Storage

11/ 24



Design

@ Space Filling Design
e Sobol QMC Sequences: Theoretical guarantees on “uniform” space
filling.
o Latin Hypercube Sampling (LHS): Probabilistic counterpart of QMC
sequences.
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Design

@ Probabilistic Design: Mimics the distribution of (P, /). Too targeted,
fails to explore the space.

@ Gridded Design: Probabilistic in P and equally spaced in /
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Design

@ Probabilistic Design: Mimics the distribution of (P, /). Too targeted,
fails to explore the space.

@ Gridded Design: Probabilistic in P and equally spaced in /

Inventory

Joint Probabilistic design

Inventory

1800

1600

1400

1200

Price

Conventional product design

@ Mixture Design: Combination of space filling and probabilistic designs
(exploration-exploitation tradeoff).
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Stochastic Simulator (at time ty)

e Choose the design Dy := (P], 1] mg, .n=1..., Ny).

teo Ttk41?

@ Generate one-step paths Pg( —> PZ<+1'

o Calculate one-step-ahead pathwise profits:

Vlf—i—l = _/me?}( {WA(P{LH, m?kﬂaj) + e_rAtc?(tk'i'l’ Pg<+1’ Itrl’<+1 + a(c(j))At7j)}
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Stochastic Simulator (at time ty)

e Choose the design Dy := (P], 1] mg, .n=1..., Ny).

teo Ttk

@ Generate one-step paths Pg( —> P{’Hl-

o Calculate one-step-ahead pathwise profits:

Vlf—i—l = _/me?}( {WA(P{LH, mtr‘lkﬂaj) + e_rAtc?(tk'i‘l’ Pg<+1’ Itrl’<+1 + a(c(j))At7j)}

o Learn the input-output relationship between (Py,, I;, ., mtkﬂ)fyil and
Nk . 2 . . . .
(Vk+1),2q using L* projection on an approximation space .

N
a(tka ERE ) = arg minhth'Hk Z

n=1

Example: Hy = span(¢1,...,¢r) and hy () = 2521 Bioi(+)
@ We use Gaussian Process as a new alternate for H.

2

n n n n
htk(Ptk’ Ifk+17 mfk+1) - Vk+1
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Gaussian Process Regression (GPR)

@ Assuming that the input-output relationship as
y" = h(x") + 0%,
where £ ~ N(0,1), x" = (Pg, I, ) and y" = v/ ;.
@ We assume h(-) is a realization of Gaussian random field.
o {h(x;)}V, is a sample from the multivariate normal distribution
(MVND) with mean {m(x;)}"_; and covariance {H(X,-,)g)},’-\”j:l.
o Conditional distribution at new sites x, is also multivariate normal i.e.
h(x:) | (X1, yi) Ny ~ MVND(mu(x.), fs (X, Xi))
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Gaussian Process Regression (GPR)

@ Assuming that the input-output relationship as
y" = h(x") + 0%,

where § ~ N(0,1), x" = (P, lt'lﬂ) and y" = v/ ;.

@ We assume h(-) is a realization of Gaussian random field.

o {h(x;)}V, is a sample from the multivariate normal distribution
(MVND) with mean {m(x;)}"_; and covariance {H(X,-,)g)},’-f’j:l.
o Conditional distribution at new sites x, is also multivariate normal i.e.

x| Cx i)Yy ~ MYND(m. (x.), £ (x., %))

Advantages of using GPR:
@ Analytic tractability for a non-parametric method.
@ Smooth approximation for the function and even its derivative.

@ Standard error on estimates at any new location x.
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Gaussian Process Regression

@ Rectangular level sets for the standard error due to space filling design
(Sobol QMC).

@ Mixture design leads to lower standard error in the switching region.

5y

Impact of design on posterior standard error. Left: Sobol QMC, Right: Mixture design

Allows for sequential design (Gramacy and Ludkovski (2015), Ludkovski
(2018) and Hu and Ludkovski (2016)).
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© Numerical lllustrations
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Examplel: Gas Storage

Regression Simulation Budget

Design Scheme Low Medium Large
PR-1D 4,965 5,097 5,231
GP-1D 4,968 5,107 5,247
PR-1D 5,061 5,187 5,246

Conventional

Adaptive 1D | 5 1y 5079 5195 5245
v GP-ID  |5132 5225 5266
ynamic Mixed 5137 5205 5228
Micture 20| PR2D [ 4820 4835 43834

GP-2D 5,137 5,210 5,233

Valuation \7(0, 6,1000) (in thousands) using different design-regression pairs and three simulation budgets: Low N ~ 10K,
Medium N ~ 40K, Large N ~ 100K. PR: Polynomial regression, GP: Gaussian process

@ Dynamic design: Varying budget, particularly higher simulation
budget at the boundary due to penalty.

@ Dynamic design + Mixed Regression: Varying budget and regression
scheme as we move through the backward induction.

@ Mixture design: 60% probabilistic and 40% space filling design.

@ Higher valuation with mixture and dynamic design compared to

conventional methods.
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Example2: Double Gas Storage

Jointly estimate the valuation of two independent gas storage facilities.
State space (P, I}, I2), where I is the inventory for j™ facility.
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@ Space Filling design < Conventional design < Mixture design.
@ Gaussian process better than the state-of-the-art 1D regressions.
@ Parametric 1D regressions significantly outperform parametric -3D

irrespective of the design.
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Example3: Microgrid
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@& Poor performance of space filling designs across regression methods,
GP more robust than the state-of-art.
@ GP-2D with mixture design substantially better than Parametric -1D.
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Conclusion

So far ...

o We developed a new Dynamic Emulation Algorithm:
o Scalable (very low memory requirement).
o Flexible (vary budget/regression/design distribution across time-steps).
o Fully controlled processes can be handled with ease (work in progress)
@ Non-parametric regression methods for learning the value function.

@ Emphasis on “smart” design through several examples exhibiting
dynamic, exploratory and exploitative aspects of the algorithm.

@ See https://arxiv.org/abs/1803.11309 for Microgrid example
and other details.
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Conclusion

So far ...
o We developed a new Dynamic Emulation Algorithm:
o Scalable (very low memory requirement).

o Flexible (vary budget/regression/design distribution across time-steps).
o Fully controlled processes can be handled with ease (work in progress)

@ Non-parametric regression methods for learning the value function.
@ Emphasis on “smart” design through several examples exhibiting
dynamic, exploratory and exploitative aspects of the algorithm.

@ See https://arxiv.org/abs/1803.11309 for Microgrid example
and other details.

DEA = Modular template + “Smart” Design + “Smart” Regression

Work in progress

@ We extend Dynamic Emulation Algorithm for stochastic optimal
control with probabilistic constraints.
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Microgrid Management

Net demand (Load - Renewables) as stochastic factor with dynamics
th+1 — th = Q(K — th)At + O'AWtk.
Inventory variable: I, , = Iy, +a(cy, )At = Iy, + By At, Iy, € [0, hnax).-

Control of diesel generator ¢, (1) = thl{th >0} t Bmax A ImaXtItk

Regime my,,, € {Generator ON, Generator OFF}.
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Microgrid Management

o Net demand (Load - Renewables) as stochastic factor with dynamics
th+1 - th = Q(K — th)At + O'AWtk.
o Inventory variable: I, = Iy, +a(cy, )At = Iy, + By, At, I, € [0, Imax].

. Imax*’
o Control of diesel generator c;, (1) = X¢, 1(x, >0} + Bmax N =7 &

© Regime my,,, € {Generator ON, Generator OFF}.

Imax_ltk

e Battery By, :=a(c, ) = —% v (Bmin V (et — X ) A Bmax) N "xg
@ One step profit (c, X) := —c? — |5 [C21{5<0} + C11{5>o}}.

where Stk = Cy — th - Btk'
o 5; < 0 leads to blackout; S;, > 0 waste of energy.
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Examplel: Gas Storage

Regression Simulation Budget
Design Scheme Low Medium Large
PR-1D 4,965 5,097 5,231
Conventional GP-1D 4,968 5,107 5,247
PR-2D 4,869 4,883 4,891

LOESS-2D | 4,910 4,969 5,011
GP-2D 4,652 5,161 5,243
PR-1D 4768 4,889 5028
GP-1D 4854 5064 5224
Space-filling | PR-2D 4,762 4,789 4,792
LOESS-2D | 4,747 4,912 4,934
GP-2D 4,976 5,080 5,133
. PR-1D 5,061 5,187 5,246
Adaptive 1D | cp1p 5079 5105 5245
Dynamic GP-1D 5,132 5,225 5,266
Mixed 5,137 5,205 5,228
PR-2D 4,820 4,835 4,834
Mixture 2D LOESS-2D | 4,960 4,987 5,003
GP-2D 5,137 5210 5,233

Valuation V(0, 6, 1000) (in thousands) using different design-regression pairs and three simulation budgets: Low N ~ 10K,
Medium N ~ 40K, Large N ~ 100K. The valuations are averages across 10 runs of each scheme except for LOESS-2D with
large budget: due to the excessive overhead of LOESS only a single run was carried out.
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