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Stochastic Storage: An optimal switching problem

A storage problem has two key components:

Stochastic Risk factors (autonomous dynamics).
An inventory variable (fully controlled).

Dynamics of the inventory is controlled via storage regimes (typically
finite, > 2).

In comparison, optimal stopping (American option pricing) has only
two regimes: {continue, stop} and stochastic factors.

In today’s talk we will discuss:

A new modular algorithm (and its features) for optimal switching,
combining Design of Experiments with Machine learning.

Gaussian Process as a “basis-free” method for approximating
continuation value.
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Optimal switching problems

Gas storage valuation: A classic example

Gas prices as stochastic factor with dynamics
Ptk+1

= Ptk + b(tk ,Ptk )∆t + σ(tk ,Ptk ) ∆Wtk .

Inventory variable: Itk+1
= Itk + a(ctk ) ∆t, Itk ∈ [0, Imax].

Control ctk represents rate of injection/withdrawal or holding, fully
determined by storage regime mtk+1

∈ {inject,withdraw, hold}.
Objective: Create a policy mtk+1

=M(tk ,Ptk , Itk ,mtk ) which
maximizes the expected profit v(t0,Pt0 , It0 ,mt0) in the horizon [0,T ].

Microgrid control

Electric load and renewable output as stochastic factors.

Battery storage system as inventory, controlled via backup diesel
generator.

Objective: Create a policy to match demand and supply of electricity
and maximize the negative expected cost.
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Value Function and DPE for Gas storage

Value Function V (tk ,Ptk , Itk ,mtk ) =

sup
mtk

E

[
K−1∑
s=k

e−r(ts−tk )π∆(Pts ,mts ,mts+1 ) + e−r(T−tk )W (PT , IT )
∣∣∣ Ptk , Itk ,mtk

]
,

where π∆ incorporates the revenue and the switching cost.

Dynamic Programming Equation

V (tk ,Ptk , Itk ,mtk ) = max
m∈J

E
[
π∆(Ptk ,mtk ,m) + e−r∆tV (tk+1,Ptk+1

, Itk+1
,m)

∣∣∣Ptk

]
Optimal Control

m∗(tk ,P, I ,m) = arg maxj∈J
{
π∆(P,m, j) + e−r∆tq(tk ,P, I + a(ctk (j))∆t, j)

}
,

where Continuation Value q(tk ,P, I ,m) := E
[
V (tk+1,Ptk+1

, I ,m)
∣∣Ptk = P

]
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A picture is worth a thousand words . . .
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A pathwise trajectory for two examples

Gas Storage

Buy low and sell high.

Microgrid

Switch ON/OFF the generator to match demand and charge battery.
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Control Maps

Gas Storage m∗(P, I , +1) Microgrid c∗(X , I , +1)

Optimal Policy

How to efficiently estimate the maps m∗(P, I ,m)?
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Contributions

A new algorithm Dynamic Emulation Algorithm(DEA)

Flexible modular template by reformulating optimal switching problem
as recursive statistical learning.
Memory efficient and Scalable via “smart” simulation/regressions.

Several new simulation designs which are dynamic, explores the space
and exploits the distributional content.

Gaussian Process Regression: a non-parametric tool for approximating
the continuation function q(tk , ·, ·,m)
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Traditional Implementation
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V (t + 1, ·, ·, ·)
Simulate paths and

set t = T − 1

Regression for

estimating q(t, ·, ·, ·)

set t ← t − 1

Paths for the exogenous process is simulated and stored for [0,T].
Controlled trajectory It cannot be simulated. So, replicate the
exogenous process Pt/Xt for all possible values of It .
Non-parametric regression methods are very slow since we need
≈ 104 paths for reasonable estimation.
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Dynamic Emulation Algorithm (DEA)

2 4 6 8 10
time

2

4

6

8

10

12

D
em

an
d

2 4 6 8 10
time

2

4

6

8

10

12

D
em

an
d

2 4 6 8 10
time

2

4

6

8

10

12

D
em

an
d

2 4 6 8 10
time

2

4

6

8

10

12

D
em

an
d

Evaluate

V (t + 1, ·, ·, ·)

Generate

design, simulate

one-step paths

set t = T − 1

Regression

for estimating

q(t, ·, ·, ·)

set t ← t − 1

Stochastic simulation for sequential learning of q.

Both design and regression affects the quality of the solution.

“Smart” design * Improved learning.
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Design

Space Filling Design

Sobol QMC Sequences: Theoretical guarantees on “uniform” space
filling.
Latin Hypercube Sampling (LHS): Probabilistic counterpart of QMC
sequences.
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Design

Probabilistic Design: Mimics the distribution of (P, I ). Too targeted,
fails to explore the space.

Gridded Design: Probabilistic in P and equally spaced in I
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Joint Probabilistic design
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Conventional product design

Mixture Design: Combination of space filling and probabilistic designs
(exploration-exploitation tradeoff).
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Stochastic Simulator (at time tk)

Choose the design Dk := (Pn
tk
, I ntk+1

,mn
tk+1

, n = 1, . . . ,Nk).

Generate one-step paths Pn
tk
7→ Pn

tk+1
.

Calculate one-step-ahead pathwise profits:

vnk+1 := max
j∈J

{
π∆(Pn

tk+1
,mn

tk+1
, j) + e−r∆t q̂(tk+1,P

n
tk+1

, I ntk+1
+ a(c(j))∆t, j)

}
.

Learn the input-output relationship between (Ptk , Itk+1
,mtk+1

)Nk
n=1 and

(vk+1)Nk
n=1 using L2 projection on an approximation space Hk .

q̂(tk , ·, ·, ·) = arg minhtk∈Hk

N∑
n=1

∣∣∣htk (Pn
tk
, I ntk+1

,mn
tk+1

)− vnk+1

∣∣∣2.
Example: Hk = span(φ1, . . . , φR) and htk (·) =

∑R
i=1 βiφi (·)

We use Gaussian Process as a new alternate for H.
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Gaussian Process Regression (GPR)

Assuming that the input-output relationship as

yn = h(xn) + σ2ξ,

where ξ ∼ N (0, 1), xn = (Pn
tk
, I ntk+1

) and yn = vnk+1.

We assume h(·) is a realization of Gaussian random field.

{h(xi )}Ni=1 is a sample from the multivariate normal distribution
(MVND) with mean {m(xi )}Ni=1 and covariance {κ(xi , xj)}Ni ,j=1.

Conditional distribution at new sites x∗ is also multivariate normal i.e.
h(x∗)|(xi , yi )Ni=1 ∼ MVND(m∗(x∗), κ∗(x∗, x∗))

Advantages of using GPR:

Analytic tractability for a non-parametric method.

Smooth approximation for the function and even its derivative.

Standard error on estimates at any new location x .
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Gaussian Process Regression

Rectangular level sets for the standard error due to space filling design
(Sobol QMC).

Mixture design leads to lower standard error in the switching region.
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Impact of design on posterior standard error. Left: Sobol QMC, Right: Mixture design

Allows for sequential design (Gramacy and Ludkovski (2015), Ludkovski
(2018) and Hu and Ludkovski (2016)).
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Example1: Gas Storage

Regression Simulation Budget
Design Scheme Low Medium Large

Conventional
PR-1D 4,965 5,097 5,231
GP-1D 4,968 5,107 5,247

Adaptive 1D
PR-1D 5,061 5,187 5,246
GP-1D 5,079 5,195 5,245

Dynamic
GP-1D 5,132 5,225 5,266
Mixed 5,137 5,205 5,228

Mixture 2D
PR-2D 4,820 4,835 4,834
GP-2D 5,137 5,210 5,233

Valuation V̂ (0, 6, 1000) (in thousands) using different design-regression pairs and three simulation budgets: Low N ' 10K ,
Medium N ' 40K , Large N ' 100K . PR: Polynomial regression, GP: Gaussian process

Dynamic design: Varying budget, particularly higher simulation
budget at the boundary due to penalty.

Dynamic design + Mixed Regression: Varying budget and regression
scheme as we move through the backward induction.

Mixture design: 60% probabilistic and 40% space filling design.

* Higher valuation with mixture and dynamic design compared to
conventional methods.
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Example2: Double Gas Storage

Jointly estimate the valuation of two independent gas storage facilities.
State space (Pt , I

1
t , I

2
t ), where I jt is the inventory for j th facility.

Sobol PR-3D Mixture PR-3D Conventional PR-1D Mixture GP-3D
4300
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67K

100K

* Space Filling design < Conventional design < Mixture design.
* Gaussian process better than the state-of-the-art 1D regressions.
* Parametric 1D regressions significantly outperform parametric -3D
irrespective of the design.
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Example3: Microgrid

PR-1D GP-1D GP-2D
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* Poor performance of space filling designs across regression methods,
GP more robust than the state-of-art.
* GP-2D with mixture design substantially better than Parametric -1D.
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Conclusion

So far . . .

We developed a new Dynamic Emulation Algorithm:
Scalable (very low memory requirement).
Flexible (vary budget/regression/design distribution across time-steps).
Fully controlled processes can be handled with ease (work in progress)

Non-parametric regression methods for learning the value function.

Emphasis on “smart” design through several examples exhibiting
dynamic, exploratory and exploitative aspects of the algorithm.

See https://arxiv.org/abs/1803.11309 for Microgrid example
and other details.

DEA = Modular template + “Smart” Design + “Smart” Regression

Work in progress

We extend Dynamic Emulation Algorithm for stochastic optimal
control with probabilistic constraints.
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Microgrid Management

Net demand (Load - Renewables) as stochastic factor with dynamics
Xtk+1

− Xtk = α(X − Xtk )∆t + σ∆Wtk .

Inventory variable: Itk+1
= Itk + a(ctk )∆t = Itk +Btk ∆t, Itk ∈ [0, Imax].

Control of diesel generator ctk (1) = Xtk1{Xtk
>0} + Bmax ∧

Imax−Itk
∆t .

Regime mtk+1
∈ {Generator ON,Generator OFF}.

Battery Btk := a(ctk ) = − Itk
∆t ∨

(
Bmin ∨ (ctk − Xtk ) ∧ Bmax

)
∧ Imax−Itk

∆t .

One step profit π(c ,X ) := −cγ − |S |
[
C21{S<0} + C11{S>0}

]
,

where Stk = ctk − Xtk − Btk .
Stk < 0 leads to blackout; Stk > 0 waste of energy.
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Example1: Gas Storage

Regression Simulation Budget
Design Scheme Low Medium Large

Conventional

PR-1D 4,965 5,097 5,231
GP-1D 4,968 5,107 5,247
PR-2D 4,869 4,888 4,891
LOESS-2D 4,910 4,969 5,011
GP-2D 4,652 5,161 5,243

Space-filling

PR-1D 4,768 4,889 5,028
GP-1D 4,854 5,064 5,224
PR-2D 4,762 4,789 4,792
LOESS-2D 4,747 4,912 4,934
GP-2D 4,976 5,080 5,133

Adaptive 1D
PR-1D 5,061 5,187 5,246
GP-1D 5,079 5,195 5,245

Dynamic
GP-1D 5,132 5,225 5,266
Mixed 5,137 5,205 5,228

Mixture 2D
PR-2D 4,820 4,835 4,834
LOESS-2D 4,960 4,987 5,003
GP-2D 5,137 5,210 5,233

Valuation V̂ (0, 6, 1000) (in thousands) using different design-regression pairs and three simulation budgets: Low N ' 10K ,
Medium N ' 40K , Large N ' 100K . The valuations are averages across 10 runs of each scheme except for LOESS-2D with
large budget: due to the excessive overhead of LOESS only a single run was carried out.
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