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Introduction

Motivations

Adaptive Robust Parametric Markovian Control

To control the risk due to model uncertainty

(error in model estimation or model misspecification)

A robust framework adaptively reduces uncertainty through learning

Numerical Implementation

Solve discrete time robust Bellman equation

Three challenges: continuous state space, integration, optimization

Main hurdle: curse of dimensionality
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Introduction

Main Goals

To propose and study an adaptive robust control approach for

solving a discrete time Markovian control problem subject to

Knightian uncertainty

To develop a new numerical methodology in response to the

challenges arise when scaling the approach to higher dimensions.

T. R. Bielecki, T. Chen, I. Cialenco, A. Cousin, and M. Jeanblanc

Adaptive Robust Control Under Model Uncertainty. Submitted for

Publication, 2017.

T. Chen and M. Ludkovski Robust Stochastic Control and Statistical

Surrogates. In preparation, 2018.
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Introduction

Example: Dynamic Optimal Portfolio Selection
An investor is deciding on investing in a risky asset and a risk-free

banking account by maximizing the expected utility U(WT ) of the

terminal wealth.

r - the constant risk free rate

eZt - the return on the risky asset

Assume that Zt = µ∗ + σ∗εt, where εt are i.i.d. N (0,1)

The dynamics of the wealth process produced by a s.f. strategy

Wt+1 =Wt(1 + r + u(eZt+1 − 1 − r)).

Stochastic Control Problem if µ∗ and σ∗ are known:

sup
u⃗∈A

Eµ∗,σ∗[U(W u⃗
T )].
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Introduction

Notations

(Ω,F) - measurable space

T = {0,1, . . . , T} and T ′ = {0,1, . . . , T − 1}

Θ ⊂ Rd - known parameter space

X = {Xt, t ∈ T } - observed process taking values in Rk

Z = {Zt, t ∈ T } - observable i.i.d. or ergodic Markov random noise

F = {Ft, t ∈ T } - the natural filtration of X

{Pθ, θ ∈ Θ ⊂ Rd} - measures associated with plausible laws of Z

Pθ∗ - (unknown) true law of Z.
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Introduction

Classical Robust Approach

Due to model uncertainty, one considers the following robust stochastic

control problem

inf
u⃗∈A

sup
θ∈Θ

Eθ[L(X, u⃗)]

which (in some cases) is solved by Bellman equation of the form

V (t, x) = inf
u∈A

sup
θ∈Θ

Eθ[V (t + 1, f(x,u,Zθt+1))]. (1.1)

Select the best strategy u∗ over the worst possible model θ∗.

“static robustness” and no reduction of uncertainty: fixed

adversarial choice of θ∗ and Θ.

If θ∗ is far from the true model θ∗, this approach is overly

conservative.
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Introduction

Adaptive Robust Approach
By incorporating learning into the robust approach, we achieve reduction

of uncertainty through adaptively updating the parameter set. We have

the following dynamic programming equation different from (1.1):

V (t, x, θ̄) = inf
u∈A

sup
θ∈Θt(θ̄)

Eθ[V (t + 1,T(x, θ̄, u,Zθt+1)]. (1.2)

Equation (1.2) solves the robust stochastic control problem with reducing

uncertainty:

ϑ̄ is a point estimator of θ∗ and θ̄ is the realization

augmented state process Y = (X, ϑ̄) with dynamics T

dynamics of ϑ̄ is given in Bielecki, Chen, Cialenco (2017)

Θt is the confidence region centered at θ̄t

measurable selectors ǔt and θ̌t exist
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Introduction

Without uncertainty
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Introduction

Robust
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Introduction

Strong robust
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Introduction

Adaptive Robust
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Statistical Surrogates and Numerical Implementation

Outline for Numerical Implementation

We want to find a numerical solver for

V (t, x, θ̄) = inf
u∈A

sup
θ∈τ(t,θ̄)

Eθ[V (t + 1,T(t, x, θ̄, a,Zθt+1)],

for (x, θ̄) ∈ Rk ×Rd.

Discretization of the continuous state space for Y = (X, ϑ̄),

accompanied by interpolation in order to evaluate V (t, x, θ̄)

Approximation of the integral since integrand is not analytically

available

Approximation of the optimizers ǔ(x, θ̄) and θ̌(x, θ̄, u)

The key idea is to recursively construct a functional approximation

V̂ (t, ⋅) that is used for interpolation and prediction
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Statistical Surrogates and Numerical Implementation

Curse of Dimensionality

As far as we know, no existing schemes are available when the state

dimension is higher than 2. Specific difficulties include:

Traditionally one constructs a grid of (x, θ̄)-values, which is

extremely inefficient for k + d > 2 and essentially impossible for

k + d > 4

Parametric representation of V̂ (eg. in terms of polynomials in x

and θ̄) is difficult for k + d > 2 and brings the concern for

overfitting/underfitting

The control u affects the evolution of the state x and prevents

direct simulation of X as is done in the popular regression Monte

Carlo paradigm
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Statistical Surrogates and Numerical Implementation

Existing Methods for Discretization and Interpolation

Monte-Carlo based paradigm: simulate N trajectories according to a

fixed measure Q0 and solve Bellman equation pathwise

Such paradigm uses pre-specified Q0 that leads to non-adaptive

experimental design

Accompanied linear interpolation works very badly for high

dimensional problem

Estimated value functions are not smooth

No way to deal with out-of-sample path

Tao Chen ◇ ◇ ◇ UCSB November 16, 2018 ◇ ◇ ◇ Slide 14



Statistical Surrogates and Numerical Implementation

Spatial Modeling and Statistical Surrogates

After discretization, V̂ (t + 1, ⋅) is only evaluated at sampled sites

Popular interpolation methods will have to go through all sites all

the time, which is very expensive for high dimensions

If two state points y1 and y2 are close, then V̂ (t + 1, y1) and

V̂ (t + 1, y2) should also be close

Leverage already obtained solutions of similar optimization problems

Build a spatial statistical model V̂ (t + 1, ⋅) for V (t + 1, ⋅) over the

domain by learning the correlation structure of V (t + 1, ⋅) at sample

sites
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Statistical Surrogates and Numerical Implementation

Gaussian Process Surrogates

Non-parametric regression, similar to splines or kernel regression

Multivariate Gaussian structure to describe the shape of V̂ and ũ:

covariance matrix Ki,j ∶=K(yi, yj)

Train the model corresponds to applying the Gaussian conditional

equations, and posterior is still Gaussian

Statistical model for V̂ and ũ are described by the corresponding

posterior means

m∗(y∗) = k(y∗)[K + σ2I]−1e⃗,

s∗(y∗, y′∗) =K(y∗, y′∗) − k(y∗)[K + σ2I]−1k(y′∗).

Fitting the emulator = learning the hyperparameters in K.
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Statistical Surrogates and Numerical Implementation

Experimental Design

Accuracy of V̂ (t, y∗) at given input y∗ is directly related to the

density of the design Dt around y∗

Extrapolate for inputs far away from the simulated sites and depend

on the prior mean

Design Dt should be statistically sound by avoiding points that can’t

be observed in practice

Dt should increase in time to avoid extrapolation when solving the

Bellman equation backwards in time

For a design, the choosing sites must fill in the space well

Adaptively choose the design based on result of the previous step of

numerical recursion
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Statistical Surrogates and Numerical Implementation

Basic Loop

V (t, x, θ̄) = inf
u∈A

sup
θ∈τ(t,θ̄)

Eθ[V (t+1,T(t, x, θ̄, a,Zθt+1)] =∶ F (V (t+1, ⋅), x, θ̄)

We have a fit − predict − optimize − fit loop:

1 (Assume that the surrogate V̂ (t + 1, ⋅) has been fitted)

2 Select an experimental Design Dt of Nt sites yn, n = 1, . . . ,Nt;

3 Solve the optimization problem at each yn, using

predict(V̂ (t + 1, y′)) for the expectation. This yields the outputs

en = F (V̂ (t + 1, ⋅), yn) and optimal control ǔn at yn;

4 Fit V̂ (t, ⋅) based on data (y1∶Nt , e1∶Nt) and ũ(t, ⋅) based on

(y1∶Nt , ǔ1∶Nt);

5 Goto 1: start the next recursion for t − 1
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Statistical Surrogates and Numerical Implementation

Our Contribution

We develop a machine learning framework tailored to generic

stochastic min-max optimization problem.

We recast the task of solving the Bellman equation as a statistical

learning problem of fitting a surrogate (i.e. a statistical model) for

(x, θ̄)↦ V̂ (t, x, θ̄).

Gaussian Process surrogate for V̂ , coupled with an adaptive

Experimental Design.

Gaussian Process surrogate for ũ allows us to predict the optimal

control (for out-of-sample) paths without directly optimizing.

Tao Chen ◇ ◇ ◇ UCSB November 16, 2018 ◇ ◇ ◇ Slide 19



Example Dynamic Optimal Portfolio Selection

Dynamic Optimal Portfolio Selection

Recall the dynamic optimal portfolio selection problem where an investor

wants to maximize the expected utility U(WT ) of the terminal wealth.

log return of the risky asset Zt = µ + σεt, where εt are i.i.d. N (0,1)

Dynamics of the wealth process

Wt+1 =Wt(1 + r + ϕt(eZt+1 − 1 − r))
=Wt(1 + r + ϕt(eµ+σεt − 1 − r)), t ∈ T ′, W0 = w0.

Adaptive Robust Stochastic Control Problem:

sup
u⃗∈A

inf
Q∈Qϕ,Ψ

EQ[U(W u⃗
T )].
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Example Dynamic Optimal Portfolio Selection

Confidence Region

The MLE θ̄t = (µ̄t, σ̄2
t ) of the unknown parameter θ = (µ,σ2) can be

expressed in the following recursive way:

µ̄t+1 =
t

t + 1
µ̄t +

1

t + 1
Zt+1,

σ̄2
t+1 =

t

t + 1
σ̄2
t +

t

(t + 1)2
(µ̄t −Zt+1)2

Due to asymptotic normality of the MLEs, we have the recursive 1 − α
confidence regions take the form

Θt = τα(t, µ̄, σ̄) ∶= {(µ,σ2) ∈ R2 ∶ t
σ̄2

(µ̄ − µ)2 + t

2σ̄4
(σ̄2 − σ2)2 ≤ κα}

with κα being the (1 − α)–quantile of the χ2
2 distribution.
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Example Dynamic Optimal Portfolio Selection

Dimension-reduced Bellman Equation

The associated adaptive robust Bellman equation is

V (T,w, µ̄, σ̄) = u(w),
V (t,w, µ̄, σ̄) = sup

u∈A
inf

(µ,σ)∈τα(t,µ̄,σ̄)
Eµ,σ [Vt+1 (T(t,w, µ̄, σ̄, u,Zt+1))]

By choosing the CRRA utility function U(x) = x1−γ

1−γ , we can be show that the ratio V

defined as V (t, µ̄, σ̄) ∶= V (t,w, µ̄, σ̄)/w1−γ satisfy the following backward recursion

V (T, µ̄, σ̄) = 1

1 − γ ,

V (t, µ̄, σ̄) = inf
u∈A

sup
(µ,σ)∈τα(t,µ̄,σ̄)

E[(1 + r + u(eµ+σεt+1 − 1 − r))1−γ

V (t + 1,
t

t + 1
µ̄ + 1

t + 1
(µ + σεt+1),

t

t + 1
σ̄2 + t

(t + 1)2
(µ̄ − µ − σεt+1)2)].
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Example Dynamic Optimal Portfolio Selection

Algorithm Part I

Backward recursion over the time steps for t = T − 1, . . . ,0

1 Create a design Dt = (µ1∶Nt
t , σ1∶Nt

t ) that will be used to estimate

V̂ (t, ⋅). The design is based on Monte Carlo paradigm, Sobol space

filling, and adaptively adding more points.

2 For n = 1,2, . . . ,Nt, let

f2(u,µnt , σnt ) = inf(µ,σ)∈τ(t,µnt ,σnt ) Ê[V̂ (t+1,T(t, µnt , σnt , u, µ+σε))].

Ê is an approximate operator to estimate the expectation using

quadrature rule or Monte Carlo.

3 Let ent ∶= supu∈A f2(u,µnt , σnt ). Record the estimated optimal

control ǔnt .

4 Build a GP model V̂ (t, ⋅) for the link between (µnt , σnt ) and (ent ).

Build a GP model ũ(t, ⋅) for the link between (µnt , σnt ) and (ǔnt ).
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Example Dynamic Optimal Portfolio Selection

Algorithm Part II

Forward simulation on fresh paths, over the time steps for t ∈ T ′, to

evaluate the performance of the strategy assuming the true probability

model.

1 For path n, draw i.i.d. sequence of Znt via εnt .

2 Using the GP model to predict the control unt−1 = ũ(t− 1, µnt−1, σ
n
t−1).

3 Update the states according to

(wnt+1, µ
n
t+1, σ

n
t+1) = T(t + 1,wnt , µ

n
t , σ

n
t , u

n
t−1, Z

n
t+1).

The final answer is the average V (0,w0, µ0, σ0) = 1
N ∑

N
n=1U(wnT ).
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Example Dynamic Optimal Portfolio Selection

Simulation Design
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Example Dynamic Optimal Portfolio Selection

GP Fitting and Extrapolation

In the area where points are sampled, GP surrogate works very well

For GP, outputs corresponding to inputs far away from simulated

sites are decided by mean function

We shift (ǔnt ) by a sigmoid function M(µ) = (1 + e−(Aµ−B))−1 and

set the mean function as 0

It improves the extrapolation but doesn’t affect predictions inside

the training domain
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Example Dynamic Optimal Portfolio Selection

Stability of Hyperparameters

A major worry is that the GP model is mis-estimated, which can be

diagnosed by an outlier in the hyperparameters.
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Example Adaptive Robust Hedging

Adaptive Robust Hedging

In a similar setup, the investor wants to minimize the expected

superhedging risk `[(Φ(ST ) −WT )+].
` ∶ R+ → R+ is an increasing function such that `(0) = 0

State process: (Xt, µ̄t, σ̄t,Wt), where Xt = log(St)

Need to modify the Monte Carlo paradigm as state Wt depends on

control such that direct simulation is impossible

Dt = (x1∶Nt
t , µ1∶Nt

t , σ1∶Nt
t ,BSε(st)1∶Nt)

Randomization of the starting simulation sites is important due to

strong correlation between Xt and µ̄t
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Example Adaptive Robust Hedging

Simulation Design

inf(µ,σ)∈τ(t,µnt ,σnt ) Ê[V̂ (t + 1,T(t, xnt , µnt , σnt ,wnt , u, µ + σε))]
fit V̂ (t + 1, ⋅) at T(t, xnt , µnt , σnt ,wnt , u, µ + σε) for (µ,σ) on

∂τ(t, µnt , σnt )
place sites in the area reached by state process under the true Q∗

use space-filling method to add simulation sites to Dt+1

approximate the subspace of Wt by martingale prices of the option
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Example Adaptive Robust Hedging

Multi-Start

In some extreme scenarios, value function is flat in certain regions

and fminbnd has trouble to pick the “proper” optimizer.

Does not affect backward computation but the application to the

out-of-sample paths.

Choose the smallest u∗ among all possible optimizers.

Check the boundaries of A and multi-start.
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Example Adaptive Robust Hedging

Solution of Adaptive Robust Hedging

Adaptive robust hedging strategy versus “adaptive” delta hedging.

Adaptive robust hedging strategy is conservative in the beginning

due to “uncertainty”.

Strategy gets close to delta hedging near the end.
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Example Adaptive Robust Hedging

Solution of Adaptive Robust Hedging

100 ω’s in the physical world, 100 pairs of (µ∗, σ∗): 104

out-of-sample paths

Left: distribution of the super-hedge error; Right: distribution of

hedging portfolio terminal wealth
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Thank You !

The end of the talk ...but not of the story
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