
Unbiased Monte Carlo Estimation for Multivariate
Jump-Diffusions

Guanting Chen

Institute for Computaitonal and Mathematical Engineering
Stanford University

guanting@stanford.edu

WCMF-9, University of Southern California, Los Angeles, CA
November 17, 2018

Joint work with Kay Giesecke (Stanford) and Alexander Shkolnik (UCSB)



Background

Jump-Diffusion processes are widely used in finance as models for
asset prices, interest and exchange rates, and the timing of defaults.

Jump-Diffusion processes are rarely tractable, so Monte Carlo
methods are often used to treat the pricing, risk management, and
statistical estimation problems arising in applications.

We develop an unbiased estimator for jump-diffusions with general
and state-dependent drift, volatility and jump coefficients.



Jump-Diffusion

Let X be a Markov process on D = Rd solving the SDE.

dXt = µ(Xt)dt + σ(Xt)dWt + dJt (1)

defined on a filtered probability space (Ω,F , (Ft)t≥0,P).

The µ : D → Rd , σ : D → Rd×m are the drift and volatility coefficients
and W is a m-dimensional standard Brownian motion. The jump term,

Jt =
Nt∑
n=1

h(XT−
n
,Zn) (2)

Nt is a non-explosive counting process with stopping times (Tn)n≥1

and state-dependent intensity Λ(X ) for Λ : D → (0,∞).

h : D×M→ D governs the jump sizes, and (Zn)n≥1 is a sequence of
i.i.d FTn -measurable random variables with law ν on M⊆ D.



Objective

We wish to compute the expectation E [f (XT )] for a fixed T > 0 and a
suitable class of “payoff functions” f : D → R.

Numerical Approaches

Direct analytical computation (limited scope)
Semi-analytic Fourier techniques (curse of dimensionality)
Numerical solution of the PIDE associated with E[f (XT )]

Monte Carlo (widest scope, appropriate for higher dimension)

Discretization method (discretization bias + statistical error)
Exact method (only statistical error)

Exact sampling: sample XT according to its true law
Unbiased estimation: estimator Y s.t. E[Y ] = E[f (XT )]



Literature Review

Discretization method

Diffusions: extensive, see Kloeden & Platen (1999)
Jump-Diffusions: Glasserman & Merener (2004), Giesecke et al (2015)

1-dim exact method for diffusion and jump-diffusion

Beskos & Roberts (2005), Chen & Huang (2013)
Casella & Roberts (2013), Giesecke & Smelov (2013), and Goncalves &
Roberts (2014)

d-dim exact method for diffusion
Exact sampling: Blanchet & Zhang (2017)

infinite expected running time

Unbiased estimation: Wagner (1989), Bally & Higa (2015), Labordere
et al (2017), and Rhee & Glynn (2015)

demanding conditions for coefficients

No results on (general state-dependent coefficient) multivariate jump
diffusions yet, to our knowledge.



Our Work

We combine three ingredients to develop our unbiased estimator for jump
diffusion of general coefficients:

Parametrix method

Change of measure

Iterative Monte-Carlo scheme



Parametrix Method

Consider estimating E [f (YT )], where Yt is a diffusion following

dYt = µ(Yt)dt + σ(Yt)dWt

Key idea : approximate Y by its Euler process Y π, and debias by using
some “weight function” θt(·, ·). The parametrix formula states that

E [f (YT )] = eTE

f (Y π
T )

KT−1∏
j=0

θτj+1−τj (Y
π
τj
,Y π

τj+1
)

 (3)

KT is a standard Poisson process and arrival times τ1, · · · , τKT
.

Y π is the Euler approximation to Y on 0 < τ1 < · · · τKT
< T .

Cannot apply the parametrix method to a jump diffusion directly because
its generator in the presence of jumps leads to technical challenges.



Change of measure

Let T1, · · · ,TNT
denote the jump times by horizon T . Let,

LT = exp

(∫ T

0
−
(
Λ(Xs)− Λ(XTNs

)
)
ds

) Nt∏
n=1

Λ(XT−
n

)

Λ(XTn−1)

Theorem 3.1 of Giesecke & Shkolink (2018) combined with Kolmogorov’s
extension theorem yields that E [1/LT ] = 1. Therefore, we can define

Q(A) = E[1A/LT ] A ∈ FT

a probability measure on FT . Furthermore, we have

E[f (XT )] = EQ[f (XT )LT ]

.



Change of intensity

Under Q the paths of the intensity of the jump counting process N are step
function s → Λ(XTNs

). This facilitates exact sampling of the jump times!



Iterative Monte-Carlo Scheme

Now go back to our problem of estimating Ex [f (XT )]
Denote Ti the i-th jump time of Xt , assuming we start from t = 0, it is
clear that

Ex [f (XT )] = Ex [f (XT )1{T1≤T}] + Ex [f (XT )1{T1>T}] (4)

Applying change of measure and taking g(XT1) = EFT1
[f (XT )] will give us

Ex [f (XT )1{T1≤T}] = EQ
x

[
1{T1≤T}LT1g(XT1)

]
(5)

Main idea: sample T1 under measure Q, then estimate Ex [f (XT )1{T1≤T}]
and Ex [f (XT )1{T1>T}] separately conditioned on T1. Estimate
g(XT1) = EFT1

[f (XT )] the same way as (4), hence moving forward
iteratively till Tn > T .



Estimation of Ex [f (XT )1{T1≤T}]

Recall
Ex [f (XT )1{T1≤T}] = EQ

x

[
1{T1≤T}LT1g(XT1)

]
(5)

This could be estimated unbiasedly if we can apply parametrix method to

LT1g(XT1) = exp

(
−
∫ T1

0
Λ(Xs)ds + Λ(x)T1

) Λ(XT−
1

)

Λ(x)
g(XT1) (6)

above is a function of
∫ T1

0 Λ(Xs)ds and XT−
1

, but the law of
∫ T1

0 Λ(Xs)ds

is not trivial.



Apply Parametrix Method

Recall the key observation of parametrix method: for any process that we
don’t know its law, we can approximate the law by Euler’s method.
So we can look at a different process: Ȳt = (X̄t , Z̄t), such that

dX̄t = µ(X̄t)dt + σ(X̄t)dWt

dZ̄t = Λ(X̄t)dt

X̄0 = x , Z̄0 = z

(7)

After sampling T1 under measure Q, estimation of (6) is equivalent to
estimating

f̃ (ȲT ) = exp
(
−
(
Z̄T1 − Λ(x)T1

)) Λ(X̄T1)

Λ(x)
g(X̄T1 + ∆(X̄T1)) (8)



Estimation for the second term

Recall the equation

Ex [f (XT )] = Ex [f (XT )1{T1≤T}] + Ex [f (XT )1{T1>T}] (5)

We already get an estimator for Ex [f (XT )1{T1≤T}], the estimation of
Ex [f (XT )1{T1>T}] will be simpler and in a similar spirit. Reuse the

framwork Ȳt = (X̄t , Z̄t). Notice we can apply parametrix method to

Ex [f (XT )1{T1>T}] = E
[

exp

(
−
∫ T

0
Λ(Xs)ds

)
f (XT )

]



Main Result

Theorem 1

For f ∈ C (Rd) with sub-Gaussian growth, µ(x) ∈ C 2
b , σ(x) ∈ C 2

b , and
λ(x) being sub-Gaussian. Let X be a jump-diffusion process following

dXt = µ(Xt)dt + σ(Xt)dWt + dJt , Jt =
Nt∑
n=1

h(XT−
n
,Zn)

For T > 0, we have
E[Ξ] = E[f (XT )]

where Ξ has the expression

Nt∑
i=1


i−1∏
j=1

exp

(
Z̄
π (j,1)
Tj−Tj−1

− Λ(xj )(Tj − Tj−1)

)
Λ(xj )

Λ(X̄
π (j,1)
Tj−Tj−1

)

K
(j,1)
Tj−Tj−1

−1∏
l=0

θ
τ

(j,1)
l+1

−τ(j,1)
l

(Ȳ
π (j,1)

τ
(j,1)
l

, Ȳ
π (j,1)

τ
(j,1)
l+1

)



× exp

(
−Z̄

π (i,2)
T−Ti−1

)
f (X̄

π (i,2)
T−Ti−1

)

K
(i,2)
T−Ti−1

−1∏
l=0

θ
τ

(i,2)
l+1

−τ(i,2)
l

(Ȳ
π (i,2)

τ
(i,2)
l

, Ȳ
π (i,2)

τ
(i,2)
l+1

)





Numerical experiment

In Bally’s paper, the assumptions are that µ(x), σ(x) should be bounded
smooth, but it is hard to find the exact law for f (XT ) given that
assumption.

One thing we can do is to let f (x) = 1 and our estimator should have
expectation 1. This is to test if the mechanism of our algorithm is correct.

If we pass that test, then we can try to simulate some process where we
have an analytical solution for E[f (XT )]. Here we let f (x) = x and Xt

follows an affine jump-diffusion process.



Numerical experiment: f (x) = 1

Our first experiment use the setting

µ(x) = 2 + sin(x)

σ(x) =
√

2 + sin(x)

λ(x) = 2 + sin(x)

ntrials Error Variance 99 CI
220 −0.0133 799 0.07
224 −0.0118 2157 0.029
226 0.0018 1458 0.012
228 −0.00139 2195 0.0073
230 −0.00097 2195 0.0035
232 −0.00047 3243 0.0022



Numerical experiment: f (x) = 1

Our second experiment use the affine model

µ(x) = 1− x

σ(x) =
√

2 + x

λ(x) = λ(x) = 1 + x

ntrials Error Variance 99 CI
220 −0.005672 941 0.077
224 −0.010449 1004 0.01996
226 0.001205 2146 0.01458
228 −0.00066 3048 0.00869
230 −0.00016 3671 0.00477
232 −0.00042 3099 0.00219
234 0.000384 4369 0.00130



Numerical experiment: f (x) = x

In the affine model, we are able to calculate E[XT ] explicitly. Let the jump
size be uniform on {0.5, 0.1}, µ(x) = 1− x , σ(x) =

√
2 + x and

λ(x) = 1 + x . We can solve analytically that E[X1] = 3.105996.



Numerical experiment: f (x) = x

Let the jump size be uniform on {0.5, 0.1}

µ(x) = 1− x

σ(x) =
√

2 + x

λ(x) = 1 + x

ntrials Error Variance 99 CI
220 0.05704 31818 0.4494
224 −0.07943 38575 0.1237
226 0.031501 439663 0.2088
228 −0.0254 217940 0.0735
230 −0.01132 127982 0.02817
232 −0.01102 175582 0.01650
234 −0.00203 350492 0.01165



Conclusion

By adopting Parametrix method and change of measure in an iterative
Monte Carlo scheme, We develop an unbiased Monte Carlo estimator for
multivariate Jump Diffusions and it works for general processes. We think
the future work could be

Analyze the best choice of parameters that will minimize variance.

This change of measure setting could be applied to other unbiased
algorithm for diffusions.


