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Motivation

Hype: Machine Learning in Investment

Same reporter 3 
weeks later

Efficient markets: Asset returns dominated by unforecastable news

⇒ Financial return data has very low signal-to noise ratio

⇒ This paper: Including financial constraints (no-arbitrage) in learning
algorithm significantly improves signal
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Motivation

Motivation: Asset Pricing

The Challenge of Asset Pricing

One of the most important questions in finance:

Why are asset prices different for different assets?

No-Arbitrage Pricing Theory: Stochastic discount factor SDF
(also called pricing kernel or equivalent martingale measure)
explains differences in risk and asset prices

Fundamental question: What is the SDF?

Challenges

SDF should depend on all available economic information:
Very large set of variables
Functional form of SDF unknown and likely complex
SDF needs to capture time-variation in economic conditions
Risk premium in stock returns has a low signal-to-noise ratio
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Motivation

This paper

Goals of this paper:

General non-linear asset pricing model and optimal portfolio design

⇒ Deep-neural networks applied to all U.S. equity data and large sets
of macroeconomic and firm-specific information.

Why is it important?

1 Stochastic discount factor (SDF) generates tradeable portfolio with
highest risk-adjusted return
(Sharpe-ratio=expected excess return/standard deviation)

2 Arbitrage opportunities

Find underpriced assets and earn “alpha”

3 Risk management

Understand which information and how it drives the SDF
Manage risk exposure of financial assets
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Motivation

Contribution of this paper

Contribution

This Paper: Estimate the SDF with deep neural networks

Crucial innovation: Include no-arbitrage condition in the neural
network algorithm and combine four neural networks in a novel way

Key elements of estimator:

1 Non-linearity: Feed-forward network captures non-linearities
2 Time-variation: Recurrent (LSTM) network finds a small set of

economic state processes
3 Pricing all assets: Generative adversarial network identifies the

states and portfolios with most unexplained pricing information
4 Dimension reduction: Regularization through no-arbitrage

condition
5 Signal-to-noise ratio: No-arbitrage conditions increase the

signal to noise-ratio

⇒ General model that includes all existing models as a special case 4
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Motivation

Contribution of this paper

Empirical Contributions

Empirically outperforms all benchmark models.

Optimal portfolio has out-of-sample annual Sharpe ratio of 2.15.

Non-linearities and interaction between firm information matters.

Most relevant firm characteristics are price trends, profitability, and
capital structure variables.

Shallow learning outperforms deep-learning.
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Motivation

Literature (partial list)

Deep-learning for predicting asset prices

Gu, Kelly and Xiu (2018)
Feng, Polson and Xu (2018)
Messmer (2017)

⇒ Predicting future asset returns with feed forward network

Linear or kernel methods for asset pricing of large data sets

Lettau and Pelger (2018): Risk-premium PCA
Feng, Giglio and Xu (2017): Risk-premium lasso
Freyberger, Neuhierl and Weber (2017): Group lasso
Kelly, Pruitt and Su (2018): Instrumented PCA
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Model

The Model

No-arbitrage pricing

Re
i,t+1 = excess return (return minus risk-free rate) at time t + 1 for

asset i = 1, ...,N

Fundamental no-arbitrage condition:
for all t = 1, ...,T and i = 1, ...,N

Et [Mt+1R
e
i,t+1] = 0

Et [.] expected value conditioned on information set at time t
Mt+1 stochastic discount factor SDF at time t + 1.

Conditional moments imply infinitely many unconditional moments

E[Mt+1R
e
t+1,i It ] = 0

for any Ft-measurable variable It
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Model

The Model

No-arbitrage pricing

Without loss of generality SDF is projection on the return space

Mt+1 = 1 +
N∑
i=1

wi,tR
e
i,t+1

⇒ Optimal portfolio −
∑N

i=1 wi,tR
e
i,t+1 has highest conditional

Sharpe-ratio

Portfolio weights wi,t are a general function of macro-economic
information It and firm-specific characteristics Ii,t :

wi,t = w(It , Ii,t),

⇒ Need non-linear estimator with many explanatory variables!

⇒ Use a feed forward network to estimate wi,t 8
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Estimation

Loss Function

Objective Function for Estimation

Estimate SDF portfolio weights w(.) to minimize the no-arbitrage
moment conditions

For a set of conditioning variables Ît the loss function is

L(Ît) =
1

N

N∑
i=1

Ti

T

( 1

Ti

Ti∑
t=1

Mt+1R
e
i,t+1 Ît

)2

.

Allows unbalanced panel.

How can we choose the conditioning variables Ît = f (It , Ii,t) as
general functions of the macroeconomic and firm-specific
information?

⇒ Generative Adversarial Network (GAN) chooses Ît !
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Estimation

Generative Adversarial Network (GAN)

Determining Moment Conditions

Two networks play zero-sum game:

1 one network creates the SDF Mt+1

2 other network creates the conditioning variables Ît

Iteratively update the two networks:

1 for a given Ît the SDF network minimizes the loss
2 for a given SDF the conditional networks finds Ît with the

largest loss (most mispricing)

⇒ Intuition: find the economic states and assets with the most pricing
information
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Estimation

Recurrent Neural Network (RNN)

Transforming Macroeconomic Time-Series

Problems with economic time-series data

Time-series data is often non-stationary ⇒ transformation
necessary
Asset prices depend on economic states ⇒ simple differencing
of non-stationary data not sufficient

Solution: Recurrent Neural Network (RNN) with Long-Short-Term
Memory (LSTM) cells

Transform all macroeconomic time-series into a low dimensional
vector of stationary state variables
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Estimation

Example: Non-stationary Macroeconomic Variables

Macroeconomic Variables
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Estimation

Macroeconomic state processes
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Figure: Macroeconomic state processes (LSTM Outputs) based on
178 macroeconomic time-series.
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Estimation

Neural Networks

Model Architecture
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Data

Data

Data

50 years of monthly observations: 01/1967 - 12/2016.

Monthly stock returns for all U.S. securities from CRSP
(around 31,000 stocks)
Use only stocks with with all firm characteristics
(around 10,000 stocks)

46 firm-specific characteristics for each stock and every month
(usual suspects) ⇒ Ii,t
normalized to cross-sectional quantiles

178 macroeconomic variables
(124 from FRED, 46 cross-sectional median time-series for
characteristics, 8 from Goyal-Welch) ⇒ It

T-bill rates from Kenneth-French website

Training/validation/test split is 20y/5y/25y
15
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Data

Benchmark models

Benchmark models

1 Linear factor models (CAPM, Fama-French 5 factors)

2 Instrumented PCA (Kelly et al. (2018): estimate SDF as linear
function of characteristics: wi,t = θ>Ii,t

3 Deep learning return forecasting (Gu et al. (2018)):

Predict conditional expected returns Et [Ri,t+1]
Empirical loss function for prediction

1

NT

N∑
i=1

T∑
t=1

(Ri,t+1 − g(It , Ii,t+1))2

Use only simple feedforward network for forecasting
Optimal portfolio: Long-short portfolio based on deciles of
highest and lowest predicted returns
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Results

Results - Sharpe Ratio

Sharpe Ratios of Benchmark Models

Model SR (Train) SR (Valid) SR (Test)
FF-3 0.27 -0.09 0.19
FF-5 0.46 0.37 0.22
IPCA 1.05 1.17 0.47

RtnFcst 0.63 0.41 0.27
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Results

Results - Sharpe Ratio

Table: Performances of our approach sorted by validation Sharpe ratio

SR SR SR SMV CSMV HL CHL HU CHU
(Train) (Valid) (Test)

1.80 1.01 0.62 4 32 4 0 64 4
1.30 1.01 0.54 4 32 2 1 64 8
2.13 0.97 0.61 4 32 4 0 64 16
2.49 0.96 0.51 4 32 4 0 64 16

⇒ Optimal model: 4 moments, 4 macro states, 4 layers, 64 hidden
units
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Results

Optimal Portfolio Performance
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Figure: Cumulated Normalized SDF Portfolio.
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Results

Results - Sharpe Ratio for Forecasting Approach

Performances with Return Forecast Approach

Macro Neurons SR (Train) SR (Valid) SR (Test)
Y [32, 16, 8] 0.16 0.24 -0.00
Y [128, 128] 1.30 0.10 0.04
N [32, 16, 8] 0.63 0.41 0.27
N [128, 128] 0.67 0.51 0.37
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Results

IPCA: Number of Factors
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Figure: Sharpe ratio as a function of the number of factors for IPCA
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Results

Results - Sharpe Ratio

Performance of Benchmark Models

Table: SDF Portfolio vs. Fama-French 5 Factors

Mkt-RF SMB HML RMW CMA intercept

coefficient 0.06 0.00 0.01 0.17 0.05 0.47
correlation 0.02 -0.14 0.25 0.33 0.16 -

⇒ Conventional factors do no span SDF
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Results

Results - Variable Importance

Variables Ranked by Average Absolute Gradient (Top 20) for SDF
network
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Results

Results - Variable Importance

Variables Ranked by Reduction in R2 for RtnFcst (Top 20)
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Results

Size Effect
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Figure: SDF weight and market capitalization in test data
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Non-linearities

Results - SDF Weights

Relationship between Weights and Characteristics
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Figure: Weight as a function of size (LME) and book-to-market (BEME).

⇒ Size and value have close to linear effect
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Non-linearities

Results - SDF Weights

Relationship between Weights and Characteristics
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Figure: Weight as a function of size (LME) and book-to-market (BEME).

⇒ Size and value have non-linear interaction! 27
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Non-linearities

Results - SDF Weights

Relationship between Weights and Characteristics
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Figure: Weight as a function of size, book-to-market and ST-reversal.

⇒ Complex interaction between multiple variables!
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Non-linearities

Results - SDF Weights

Relationship between Weights and Characteristics
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Figure: Weight as a function of reversal (r36-13) or momentum (r12-7).

⇒ Non-linear effect!
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Non-linearities

Results - Weights

Relationship between Weights and Characteristics

0.0 0.2 0.4 0.6 0.8 1.0
r36_13

0.0

0.2

0.4

0.6

0.8

1.0
r1

2
_7

0.018

0.012

0.006

0.000

0.006

0.012

0.018

0.024

0.030

w
e
ig

h
t

Figure: Weight as a function of momentum (r12-7) and reversal (r36-13).

⇒ Complex interaction! 30
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Non-linearities

Results - Weights

Relationship between Weights and Characteristics
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Figure: Weight as a function of momentum (r12-7), reversal (r36-13) and
size (LME).

⇒ Complex interaction between multiple variables!
31



Intro Model Estimation Empirical Results Simulation Conclusion Appendix

Simulation

Simulation

Setup

Consider a single factor model

Ri,t+1 = βi,tFt+1 + εi,t+1

The only factor is sampled from N (µF , σ
2
F ).

The loadings are βi,t = Ci,t with Ci,t i.i.d N (0, 1).

The residuals are i.i.d N (0, 1).

N = 500 and T = 600. Define training/validation/test = 250, 100, 250.

Consider σ2
F ∈ {0.01, 0.05, 0.1}.

Sharpe Ratio of the factor SR = µF/σF = 0.3 or SR = 1.
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Simulation

Simulation Results: Intuition

Intuition: Better noise diversification with our approach

Simple return prediction

1

TN

N∑
i=1

N∑
t=1

(Re
i,t+1 − f (It))2

SDF estimator

1

N

N∑
i=1

( 1

T

T∑
t=1

Re
i,t+1Mt+1g(Ci,t)

)2

⇒ SDF estimator averages out the noise over the time-series
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Simulation

Simulation Results

Sharpe Ratio on Test Dataset

σ2
F RtnFcst SDF estimator

SR=0.3

0.01 0.03 0.22
0.05 0.20 0.33
0.10 0.35 0.35

SR=1

0.01 0.63 0.96
0.05 0.92 0.97
0.10 1.03 1.03
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Simulation

Simulation Results

Estimated loadings and SDF weights

(a) Our SDF estimator (b) Return forecasting

⇒ Our approach detects SDF and loading structure.

⇒ Simple forecasting approach fails.
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Conclusion

Conclusion

Methodology

Novel combination of deep-neural networks to estimate the pricing
kernel

Key innovation: Use no-arbitrage condition as criterion function

Time-variation explained by macroeconomic states and firm
characteristics

General asset pricing model that includes all other models as special
cases

Empirical Results

Outperforms benchmark models

Non-linearities and interactions are important
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Results

Performance of Benchmark Models

Table: Max 1 Month Loss & Max Drawdown

Max 1 Month Loss Max Drawdown

IPCA -6.711 5
RtnFcst (Equally Weighted) -4.005 4
RtnFcst (Value Weighted) -3.997 4

SDF -5.277 4

⇒ Optimal portfolio has desirable properties

A 2
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IPCA: Number of Factors

Table: Performance with IPCA

Number of Factors SR (Train) SR (Valid) SR (Test)
1 0.113 0.117 0.206
2 0.121 0.100 0.226
3 0.483 0.205 0.184
4 0.498 0.200 0.176
5 0.507 0.196 0.164
6 0.685 0.843 0.485

12 1.049 1.174 0.470

A 3
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Results - Sharpe Ratio for Forecasting Approach

Performances with Return Forecast Approach

Macro Neurons Value Weighted SR (Train) SR (Valid) SR (Test)
Y [32, 16, 8] N 0.21 0.09 0.03

Y 0.16 0.24 -0.00
Y [128, 128] N 1.51 0.20 0.15

Y 1.30 0.10 0.04
N [32, 16, 8] N 1.13 1.34 0.68

Y 0.63 0.41 0.27
N [128, 128] N 1.22 1.25 0.67

Y 0.67 0.51 0.37

A 4
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Optimal Portfolio Performance
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Figure: Cumulated Normalized SDF Portfolio. Use equal weighting
for return forecast approach.
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Optimal Portfolio Performance
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Figure: Cumulated Normalized SDF Portfolio. Include both value
weighting and equal weighting for return forecast approach.

A 6



Intro Model Estimation Empirical Results Simulation Conclusion Appendix

Hyper-Parameter Search

Search Space

CV number of conditional variables: 4, 8, 16, 32

SMV number of macroeconomic state variables: 4, 8, 16, 32

HL number of fully-connected layers: 2, 3, 4

HU number of hidden units in fully-connected layers: 32, 64,
128

D dropout rate (keep probability): 0.9, 0.95

LR learning rate: 0.001, 0.0005, 0.0002, 0.0001

Choose best configuration of all possible combinations (1152)
of hyper-parameters on validation set.

Use ReLU activation function ReLU(x)i = max(xi , 0).

A 7
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Models for Comparison

Loss Functions for Different Models

1 Simple return prediction

1

TN

N∑
i=1

N∑
t=1

(Re
i,t+1 − f (It ))2

2 Unconditional moment

1

N

N∑
i=1

( 1

T

T∑
t=1

Re
i,t+1Mt+1

)2

3 GAN conditioned on the firm characteristics (benchmark approach)

1

N

N∑
i=1

( 1

T

T∑
t=1

Re
i,t+1Mt+1g(Ci,t )

)2

4 GAN network based on moment portfolios

( 1

T

T∑
t=1

( 1

N

N∑
i=1

Re
i,t+1g(Ci,t )

)
Mt+1

)2

5 Price decile portfolios

1

10

10∑
i=1

( 1

T

T∑
t=1

Re
i,t+1Mt+1

)2
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Simulation Results

Sharpe Ratio on Test Dataset (SR=1)

σ2
F RtnFcst UNC GAN PortGan Decile

0.01 0.627 0.98 0.964 0.978 0.983
0.05 0.924 0.957 0.969 0.957 0.953
0.1 1.031 1.023 1.033 1.003 1.039

A 9
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Simulation Results (Continue)

Sharpe Ratio on Test Dataset (SR=0.3)

σ2
F RtnFcst UNC GAN PortGan Decile

0.01 0.03 0.22 0.221 0.222 0.215
0.05 0.199 0.33 0.331 0.319 0.328
0.1 0.353 0.368 0.353 0.366 0.36

A 10
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Economic Significance of Variables

Sensitivity

We define the sensitivity of a particular variable as the
magnitude of the derivative of weight w with respect to this
variable (averaged over the data):

Sensitivity(xj) =
1

C

N∑
i=1

∑
t

∣∣∣∂w(Ĩt , Ii ,t)

∂xj

∣∣∣ (1)

with C a normalization constant. The analysis is performed
with the feed-forward network and we only consider the
sensitivity of firm characteristics and state macro variables.

A sensitivity of value z for a given variable means that the
weight w will approximately change (in magnitude) by z∆ if
that variable is changed by a small amount ∆.

A 11
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Interactions between Variables

Significance of Interactions

We might also want to understand how the output simultaneously
depends upon multiple variables. We can measure the economic
significance of the interaction between variables xi and xj by the
derivative:

Sensitivity(xi , xj) =
1

C

N∑
i=1

∑
t

∣∣∣∂2w(Ĩt , Ii ,t)

∂xi∂xj

∣∣∣ (2)

This derivative can be generalized to measure higher-order
interactions.

A 12
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Finite Difference Schemes

First-Order and Second-Order Finite Difference Schemes

Suppose we have some multivariate function f . Without actually
measuring gradients, we can approximate them with finite
difference methods

∂f

∂xj
≈ f (xj + ∆)− f (xj)

∆
(3)

∂2f

∂xi∂xj
≈ f (xi + ∆, xj + ∆)− f (xi + ∆, xj)− f (xi , xj + ∆) + f (xi , xj)

∆2

(4)

A 13
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Leave-One-Out Methods

Leave-One-Out Analysis

Leave-one-out analysis is another method to explain the
explanatory power of the variables. For each variable, the variable
is removed from the model and the Sharpe Ratio is evaluated on
the test dataset in the absence of this covariate. Specifically, the
leave-one-out variable is set to 0 for all data samples in the test
dataset and the Sharpe Ratio is calculated using the reduced
variable vector. Then, the variable is replaced in the model, and a
leave-one-out test is performed on a new variable.
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SDF Network

Summary

1 GOAL: Generate portfolio weight wi ,t .

2 Input: Macro-economic information history {I1, . . . , It} and
firm characteristics Ii ,t .

3 Output: Weight wi ,t .
4 Architecture:

The history of macro variables is transformed via a Recurrent
Neural Network (RNN). The transformed macro variables
extract predictive information and summarize macro history.
The transformed macro variables and firm characteristics are
passed through a Feed Forward Network to generate weights.
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Feed Forward Network

Figure: Feed Forward Network with Dropout
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Feed Forward Network

Network Structure

The input layer accepts the raw predictors (or features).

h0 = xi,t = [Ii,t , Ĩt ] (5)

Each hidden layer takes the output from the previous layer and transforms
it into an output as

hk = f (hk−1Wk + bk) k = 1, . . . ,K (6)

In our implementation, we use ReLU activation function.

ReLU(x)i = max(xi , 0) (7)

The output layer is simply a linear transformation of the output from the
last hidden layer to a scaler

wi,t = hKWK+1 + bK+1 (8)
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Feed Forward Network

Model Complexity

Number of hidden layers: K .

Let’s denote pk to be the number of neurons (or hidden units)
in the layer k . The parameters in the layer k are

Wk ∈ Rpk−1×pk and bk ∈ Rpk (9)

with p0 = dim(Ii ,t) + dim(Ĩt) and pK+1 = 1.

Number of parameters:
∑K+1

k=1 (pk−1 + 1)pk .
e.g. A 4-hidden-layer network with hidden units
[128, 128, 64, 64] has 39105 parameters.
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State RNN

Two Reasons for RNN

Instead of directly passing macro variables It as features to the
feed forward network, we apply a nonlinear transformation to them
with an RNN.

Many macro variables themselves are not stationary and have
trends. Necessary transformations of It are essential in
generating a statble model.

Using RNN allows us to encode all historical information of
the macro economy. Intuitively, RNN summarizes all historical
macro information into a low dimensional vector of state
variables in a data-driven way.
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Transform Macro Variables via RNN

Properties of RNN

For any Ft-measurable sequence It , the output sequence Ĩt is
again Ft-measurable. The transformation creates no
look-ahead bias.

Ĩt contains all the macro information in the past, while It only
uses current information.

RNN helps create a stationary macro inputs for the feed
forward network.
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Recurrent Network

Recurrent Network with RNN Cell

Recurrent Network with LSTM Cell
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Recurrent Network

RNN Cell

RNN Cell Structure

A vanilla RNN model takes the current input variable xt = It and
the previous hidden state ht−1 and performs a nonlinear
transformation to get the current hidden state ht

ht = f (ht−1Wh + xtWx). (10)
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Recurrent Network

LSTM Cell
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Recurrent Network

LSTM Cell Structure

An LSTM model creates a new memory cell c̃t with current input xt and
previous hidden state ht−1:

c̃t = tanh(ht−1W
(c)
h + xtW

(c)
x ). (11)

An input gate it and a forget gate ft are created to control the final memory
cell:

it = σ(ht−1W
(i)
h + xtW

(i)
x ) (12)

ft = σ(ht−1W
(f )
h + xtW

(f )
x ) (13)

ct = ft ◦ ct−1 + it ◦ c̃t . (14)

Finally, an output gate ot is used to control the amount of information stored
in the hidden state:

ot = σ(ht−1W
(o)
h + xtW

(o)
x ) (15)

ht = ot ◦ tanh(ct). (16)
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Motivation

Our Approach

We work with the fundamental pricing equation to obtain estimates of
pricing kernel (or Stochastic Discount Factor or SDF).

1 Few additional assumptions.

2 Nonlinear in underlying predictors.

3 Time-varying portfolio weights.

4 Theoretically most profitable portfolio.
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Motivation

Our Approach

We work with the fundamental pricing equation to obtain estimates of
pricing kernel (or Stochastic Discount Factor or SDF).

1 Few additional assumptions.

APT: Et [Mt+1R
e
i,t+1] = 0 (17)

Projection: Mt+1 = 1 +
N∑
i=1

wi,tR
e
i,t+1 (18)

2 Nonlinear in underlying predictors.

3 Time-varying portfolio weights.

4 Theoretically most profitable portfolio.
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Motivation

Our Approach

We work with the fundamental pricing equation to obtain estimates of
pricing kernel (or Stochastic Discount Factor or SDF).

1 Few additional assumptions.

2 Nonlinear in underlying predictors.
We model portfolio weights wi,t as some general function of
macro-economic information It and firm-specific characteristics Ii,t :

wi,t = w(It , Ii,t ; θ), (19)

which can be highly nonlinear in input variables and high
dimensional parameter θ. (Ans: Neural Networks)

3 Time-varying portfolio weights.

4 Theoretically most profitable portfolio.
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Motivation

Our Approach

We work with the fundamental pricing equation to obtain estimates of
pricing kernel (or Stochastic Discount Factor or SDF).

1 Few additional assumptions.

2 Nonlinear in underlying predictors.

3 Time-varying portfolio weights.
We construct infinite number of moment conditions from pricing
formula (17). For any Ft-measurable variable Ît ,

E[Mt+1R
e
i,t+1 Ît ] = 0. (20)

4 Theoretically most profitable portfolio.
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Motivation

Our Approach

We work with the fundamental pricing equation to obtain estimates of
pricing kernel (or Stochastic Discount Factor or SDF).

1 Few additional assumptions.

2 Nonlinear in underlying predictors.

3 Time-varying portfolio weights.

4 Theoretically most profitable portfolio.
With (17) and (18), wi,t defines a portfolio with the highest Sharpe
Ratio.
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Comparison with Gu et al. (2018)

Target - Difference

Gu et al. (2018): Given current available information, what is the
best guess of asset’s future return E[ri,t+1|Ft ]?

[Chen et al., 2018]: Given current available information, what is
the best guess of SDF (projected on asset span) that prices all the
assets?

Target - Connection

The (conditional) expectation and Sharpe Ratio of SDF is related to
the estimation of E[ri,t+1|Ft ] and E[ri,t+1rj,t+1|Ft ].

E[SDFt+1|Ft ] = 1 + w>t E[Re
t+1|Ft ] (21)

E[SDF 2
t+1|Ft ] = 1 + 2w>t E[Re

t+1|Ft ] + w>t E[Re
t+1R

e>
t+1|Ft ]wt (22)
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Comparison with Gu et al. (2018)

Objective Function (Loss Function) - Difference

Gu et al. (2018): For any Ft-measurable variable g(zi,t ; θ), E[ri,t+1|Ft ]
is the one such that E[(ri,t+1 − g(zi,t ; θ))2] is minimized. The empirical
loss function reads as

1

NT

N∑
i=1

T∑
t=1

(ri,t+1 − g(zi,t ; θ))2 (23)

[Chen et al., 2018]: SDFt+1 is a process such that for any asset and any
conditional variable Ît , E[SDFt+1R

e
i,t+1 Ît ] = 0. There are infinite number

of moment conditions and unconditional expectation E[SDFt+1R
e
i,t+1] = 0

is only one of them. Therefore, the empirical loss function based on
unconditional expectation

1

N

N∑
i=1

( 1

T

T∑
t=1

SDFt+1R
e
i,t+1

)2

(24)

might not be enough.
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Comparison with Gu et al. (2018)

Model Architecture - Difference

Gu et al. (2018): Concatenate macro variables and firm
characteristics as inputs of a fully-connected network to model
E[ri ,t+1|Ft ].

[Chen et al., 2018]: Encode macro variables to state macro
variables with an RNN, which are then concatenated with firm
characteristics as inputs of a fully-connected network to model
wt .
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Comparison with Gu et al. (2018)

Optimal Portfolio - Difference

Gu et al. (2018): The stocks are sorted into deciles based on
model’s forecasts. A zero-net-investment portfolio is
constructed that buys the highest expected return stocks
(decile 10) and sells the lowest (decile 1) with equal weights.

[Chen et al., 2018]: The portfolio weights are given by the
model. The optimal portfolio −w>t Re

t+1 is obtained by
shorting SDF portfolio.

A 33



Intro Model Estimation Empirical Results Simulation Conclusion Appendix

Model Architecture

Activation Function

The function f is nonlinear and is called the activation function.
Common activation functions are Sigmoid, tanh and ReLU.

σ(x) =
1

1 + e−x
tanh(x) = 2σ(2x)− 1 ReLU(x) = max(0, x) (25)
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Gu, S., Kelly, B. T., and Xiu, D. (2018). Empirical asset pricing
via machine learning.
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