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Bayesian Structural Time Series (BSTS) Model

BSTS model is a machine learning technique used for feature
selection, time series forecasting, nowcasting, inferring causal
impact and other.
The model consists of three main parts:

1 Kalman filter: The technique for time series decomposition. In
this step, a researcher can add different state variables: trend,
seasonality, regression, and others.

2 Spike-and-slab method: In this step, the most important
regression predictors are selected.

3 Bayesian model averaging: Combining the results and
prediction calculation.
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Multivariate Bayesian Structural Time Series (MBSTS)
Model

Structural Time Series Models belong to state space models

Observation Equation: ỹt = ZT
t αt + ε̃t , ε̃t ∼ Nm(0,Σt),

ỹt : observations, αt : unobserved latent states

Transition Equation: αt+1 = Ttαt + Rtηt , ηt ∼ Nq(0,Qt),

The model matrices Zt , Tt , and Rt typically contain unknown
parameters.
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MBSTS Model

In general, the model in state space form can be written as:

ỹt = µ̃t + τ̃t +ω̃t + ξ̃t + ε̃t ε̃t
iid∼ Nm(0,Σε) t = 1, 2 . . . , n. (1)

Based on state space form, αt is the collection of these
components, namely αt = [µ̃Tt , τ̃

T
t , ω̃

T
t , ξ̃

T
t ]T .
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MBSTS Model

Trend component

µ̃t+1 = µ̃t + δ̃t + ũt , ũt
iid∼ Nm(0,Σµ), (2)

δ̃t+1 = D̃ + ρ̃(δ̃t − D̃) + ṽt , ṽt
iid∼ Nm(0,Σδ). (3)

Seasonality component

τ
(i)
t+1 = −

Si−2∑
k=0

τ
(i)
t−k+w

(i)
t , w̃t = [w

(1)
t , · · · ,w (m)

t ]T
iid∼ Nm(0,Στ ),

(4)
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MBSTS Model

Cyclical effect component

ω̃t+1 = %̃ĉos(λ)ω̃t + %̃ŝin(λ)ω̃?t + κ̃t , κ̃t
iid∼ Nm(0,Σω),

ω̃?t+1 = −%̃ŝin(λ)ω̃t + %̃ĉos(λ)ω̃?t + κ̃?t , κ̃?t
iid∼ Nm(0,Σω),

(5)

where %̃, ŝin(λ), ĉos(λ) are m ×m diagonal matrices with
diagonal entries equal to %ii , sin(λii ) where λii = 2π/qi is the
frequency with qi being a period such that 0 < λii < π, and
cos(λii ) respectively.
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MBSTS Model

Regression component

ξ
(i)
t = βTi x

(i)
t . (6)

For target series y (i), the x
(i)
t = [x

(i)
t1 , . . . , x

(i)
tki

]T is the pool of all

available predictors at time t, and βi = [βi1, . . . , βij , . . . , βiki ]
T

represent corresponding static regression coefficients.
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MBSTS Model

Spike and Slab Regression:

In feature selection, a high degree of sparsity is expected, in
the sense that the coefficients for the vast majority of
predictors will be zero.

A natural way to represent sparsity in the Bayesian paradigm
is through the spike and slab coefficients.

One advantage of working in a fully Bayesian setting is that
we do not need to commit to a fixed set of predictors.
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MBSTS Model

Ỹ = M̃ + T̃ + W̃ + Xβ + Ẽ (7)

where Ỹ = vec(Y ), M̃ = vec(M), T̃ = vec(T ), W̃ = vec(W ), Ẽ =
vec(E ), and X , β are written as:

X =


X1 0 0 . . . 0
0 X2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Xm

 β =


β1
β2
...
βm

 (8)

where Xi being n × ki matrix, representing all observations of ki
candidate predictors for y (i).
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MBSTS Model

Prior distribution and elicitation
We define γij = 1 if βij 6= 0, and γij = 0 if βij = 0. Then
γ = [γ1, . . . , γm], where γi = [γi1, . . . , γiki ]. The spike prior may
be written as:

γ ∼
m∏
i=1

ki∏
j=1

π
γij
ij (1− πij)1−γij (9)

where πij is prior inclusion probability of j th predictor for i th

response series.
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MBSTS Model

Prior distribution and elicitation
A simple slab prior specification is to make β and Σε prior
independent:

p(β,Σε, γ) = p(β|γ)p(Σε|γ)p(γ)

β|γ ∼ NK (bγ ,A
−1
γ )

Σε|γ ∼ IW (v0,V0)

(10)

where bγ is the vector of prior means with the same dimension as
βγ , and Aγ is the full-model prior information matrix.
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MBSTS Model

By the law of total probability, the full likelihood function is given
by

p(Ỹ ?, β,Σε, γ) = p(Ỹ ?|β,Σε, γ)× p(β|γ)× p(Σε|γ)× p(γ), (11)

p(Ỹ ?|β,Σε, γ) ∝ |Σε|−n/2 exp

(
−1

2
(Ỹ ? − Xγβγ)T (Σ−1

ε ⊗ In)(Ỹ ? − Xγβγ)

)
,

(12)

p(β|γ) ∝ |Aγ |1/2 exp

(
−1

2
(βγ − bγ)TAγ(βγ − bγ)

)
, (13)

p(Σε|γ) ∝ |Σε|−(v0+m+1)/2 exp

(
tr(−1

2
V0Σ−1

ε )

)
, (14)

where Ỹ ? = Ỹ − M̃ − T̃ − W̃ is the multiple response series Ỹ
with time series components subtracted out.
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MBSTS Model

Posterior Inference

β|Ŷ ?,Σε, γ ∼ NK (β̃γ , (X̂
T
γ X̂γ + Aγ)−1). (15)

Σε|Ỹ ?, β, γ ∼ IW (v0 + n,ET
γ Eγ + V0). (16)

p(γ|Σε, Ỹ
?) =C (Σε, Ỹ

?)
|Aγ |1/2p(γ)

|X̂T
γ X̂γ + Aγ |1/2

× exp

(
−1

2
{bTγ Aγbγ − ZT

γ (X̂T
γ X̂γ + Aγ)−1Zγ}

)
.

(17)

Σµ,δ,τ,ω|µ, δ, τ, ω ∼ IW (wµ,δ,τ,ω + n,Wµ,δ,τ,ω + AAT ). (18)
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MBSTS Model

Markov Chain Monte Carlo
MCMC methods are a class of algorithms to sample from a
probability distributions ((15), (16), (17) and (18)) based on
constructing a Markov chain that has the desired distribution as its
equilibrium distribution. The state of the chain after a number of
steps is then used as a sample from the desired distribution.
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Model Training

Let
θ = (Σµ,Σδ,Στ ,Σω)

denote the set of state component parameters. Looping through
the five steps yields a sequence of draws

ψ̃ = (α, θ, γ,Σε, β)

from a Markov chain with stationary distribution p(ψ̃|Y ), the
posterior distribution of ψ̃ given Y .



Introduction MBSTS Applications on Finance

MBSTS Model Training

1: Draw the latent state α = (µ̃, δ̃, τ̃ , ω̃) from given model
parameters and Ỹ , namely p(α|Ỹ , θ, γ,Σε, β), using the
posterior simulation algorithm Durbin and Koopman (2002).

2: Draw time series state component parameters θ given α,
namely simulating θ ∼ p(θ|Ỹ , α) based on equation (18).

3: Loop over i in an random order, draw each γi |γ−i , Ỹ , α,Σε,
namely simulating γ ∼ p(γ|Ỹ ?,Σε) one by one based on
equation (17), using the stochastic search variable selection
(SSVS) algorithm from George and McCulloch (1997).

4: Draw β given Σε, γ, α and Ỹ , namely simulating
β ∼ p(β|Σε, γ, Ỹ

?) based on equation (15).
5: Draw Σε given γ, α, β and Ỹ , namely simulating

Σε ∼ p(Σε|γ, Ỹ ?, β) based on equation (16).
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Target Series Forecasting Let Ŷ represents the set of values to
be forecast. The posterior predictive distribution of Ŷ can be
expressed as follows:

p(Ŷ |Y ) =

∫
p(Ŷ |ψ̃)p(ψ̃|Y )dψ̃, (19)

where ψ̃ is the set of all model parameters and latent states
randomly drawn from p(ψ̃|Y ), then we can draw samples of Ŷ
from p(Ŷ |ψ̃).
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Empirical Analysis

Data: Daily stock price of Bank of America (BOA), Capital One
Financial Corporation (COF), J.P. Morgan (JPM) and Wells Fargo
(WFC).
Time horizon: 11/27/2006 – 11/03/2017
Source: Google Finance.
Purpose: Trade when its future price is predicted to vary more
than p%.
Goal: Forecast the trend of stock movement in the next k(= 5)
days.
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We approximate the daily average price as: P̄t = (Ct + Ht + Lt)/3,
where Ct , Ht and Lt are the close, high, and low quotes for day t
respectively.

However, instead of using the arithmetic returns, we are interested
in the log return Vt defined as Vt = {log(P̄t+j/Ct)}kj=1.

We consider the indicator variable yt = max{v ∈ Vt}, the
maximum value of log returns over the next k days.
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Fundamental analysis claims that markets may incorrectly price a
security in the short run but will eventually correct it.

Trend Abbr. Trend Abbr.

Advertising & marketing advert Air travel airtvl
Auto buyers auto Auto financing autoby
Automotive autofi Business & industrial bizind
Bankruptcy bnkrpt Commercial Lending comlnd

Computers & electronics comput Construction constr
Credit cards crcard Durable goods durble
Education educat Finance & investing invest

Financial planning finpln Furniture furntr
Insurance insur Jobs jobs

Luxury goods luxury Mobile & wireless mobile
Mortgage mtge Real estate rlest

Rental rental Shopping shop
Small business smallbiz Travel travel
Unemployment unempl

Table: Google domestic trends
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Technical analysis claims that useful information is already
reflected in the price of a security. We selected a representative set
of technical indicators to capture the volatility, momentum and
trend, close location value, and potential reversals of each stock.

Variable Abbr.

Chaikin volatility ChaVol
Yang and Zhang Volatility historical estimator Vol

Arms’ Ease of Movement Value EMV
Moving Average Convergence/Divergence MACD

Money Flow Index MFI
Aroon Indicator AROON

Parabolic Stop-and-Reverse SAR
Close Location Value CLV

Table: Stock Technical Predictors
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Figure: True and fitted values of max log return from 11/27/2006 to
10/20/2017 (BOA)
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Figure: Contribution of state components to max log return (BOA)
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Empirical posterior inclusion probability for the most likely
predictors of max log return.

Figure: Bank of America Corp. Figure: Capital One Financial Corp.
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Empirical posterior inclusion probability for the most likely
predictors of max log return.

Figure: JPMorgan Chase & Co. Figure: Wells Fargo & Co.
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Cumulative absolute one-step-ahead prediction error.

Figure: All Predictors Without
Deaseasonal

Figure: Partial Predictors With
Deaseasonal



Introduction MBSTS Applications on Finance

One-step-ahead predction of max log return.

Figure: Bank of America Corp. Figure: JPMorgan Chase & Co.
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One-step-ahead predction of max log return.

Figure: JPMorgan Chase & Co. Figure: Wells Fargo & Co.
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Thank you!
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