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Biography of Hal R. Varian

Hal R. Varian is the Chief Economist at Google. He started in May 2002 as a consultant and has been involved in many aspects of the company, including auction design, econometric analysis,
finance, corporate strategy and public policy.

He is also an emeritus professor at the University of California, Berkeley in three departments: business, and information

He received his SB degree from MIT in 1969 and his MA in mathematics and Ph.D. in economics from UC Berkeley in 1973. He has also taught at MIT, Stanford, Oxford, Michigan and other
universities around the world.

Dr. Varian is a fellow of the Guggenheim Foundation, the Econometric Society, and the American Academy of Arts and Sciences. He was Co-Editor of the American Economic Review from 198
1990 and holds honorary doctorates from the University of Oulu, Finland and the University of Karlsruhe, Germany.

Professor Varian has published numerous papers in economic theory, industrial i ics and information economics. He is the author of two major
economics textbooks which have been translated into 22 languages. He is the co-author of a bss[s:‘,llmg ‘book on business strategy, Information Rules: A Sirategic Guide to the Network Economy
and wrote a monthly column for the New York Times from 2000 to 2007.
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Bayesian Structural Time Series (BSTS) Model

BSTS model is a machine learning technique used for feature
selection, time series forecasting, nowcasting, inferring causal
impact and other.

The model consists of three main parts:

1 Kalman filter: The technique for time series decomposition. In
this step, a researcher can add different state variables: trend,
seasonality, regression, and others.

2 Spike-and-slab method: In this step, the most important
regression predictors are selected.

3 Bayesian model averaging: Combining the results and
prediction calculation.



Multivariate Bayesian Structural Time Series (MBSTYS)
Model

Structural Time Series Models belong to state space models
Observation Equation: y; = ZtTozt + &, €~ Np(0,X,),
Vi1 observations, a;: unobserved latent states
Transition Equation: a¢r1 = Trar + Rene, ne ~ Ng(0, Q),

The model matrices Z;, T¢, and R; typically contain unknown
parameters.



MBSTS Model

In general, the model in state space form can be written as:
T . iid
yt:,ut—i—Tt—i—wt—i—{t—l—et Etl’l\/ Nm(O,Ze) t:]_,2 NI (]_)

Based on state space form, a; is the collection of these
components, namely o, = [}, 77, &), &7]7.



MBSTS Model

Trend component
~ ~ . . iid
fitx1 = fie + O¢ + O, g ~ Nm(0,%,), (2)
% = = ~ ~ iid
51_-+]_ =D + p((st - D) + Vi, Ve ~ Nm(O, Z(S) (3)
Seasonality component
S;i—2 4
i i i - 1 m)y T i
i == 0w = W N0, 3),
k=0

(4)



MBSTS Model

Cyclical effect component
Des1 = Beos(NGe + Bsin(N@F + R, Fe 2 Nin(0, E,),

—_—

BE = —0sin(N)r + deos(N@t + &Y, B Na(0, ),

where g, sTnm, <E(\)\) are m x m diagonal matrices with
diagonal entries equal to gj;, sin(\;;) where \;j = 27/q; is the
frequency with g; being a period such that 0 < A\; <, and
cos(Aji) respectively.
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MBSTS Model

Regression component

& = BT, (6)
For target series y(), the xt(i) = [Xt(i), . ,xt(Q]T is the pool of all
available predictors at time t, and 3; = [Bi1, - - -, B, - - -, Bik:] "
represent corresponding static regression coefficients.



MBSTS Model

Spike and Slab Regression:

@ In feature selection, a high degree of sparsity is expected, in
the sense that the coefficients for the vast majority of
predictors will be zero.

@ A natural way to represent sparsity in the Bayesian paradigm
is through the spike and slab coefficients.

@ One advantage of working in a fully Bayesian setting is that
we do not need to commit to a fixed set of predictors.



MBSTS Model

Y=M+T+W+X3+E (7)
where Y = vec(Y), M = vec(M), T = vec(T), W = vec(W), E =
vec(E), and X, [ are written as:

X, 0 0 ... 0 A1

0 0 0 ... X i

where X; being n x k; matrix, representing all observations of k;

candidate predictors for y(/).



MBSTS Model

Prior distribution and elicitation

We define v;; = 1 if 8;; # 0, and ; = 0 if 3;; = 0. Then

v =1[v1,---,7Ym], where v; = [yi1,...,7ik]- The spike prior may
be written as:

m ki
P~ Ty @ - ) ©

i=1j=1

where 7j; is prior inclusion probability of jt predictor for ith
response series.



MBSTS Model

Prior distribution and elicitation
A simple slab prior specification is to make 8 and X, prior
independent:

p(B, e, ) = p(B17)P(Zelv)p(v)
Bly ~ Ni(by, A1) (10)
Zeh/ ~ IW(Vo, Vo)

where b, is the vector of prior means with the same dimension as
B, and A, is the full-model prior information matrix.



MBSTS Model

By the law of total probability, the full likelihood function is given
by

p(Y*, B, %e,7) = p(Y*[B,Ze,7) x p(Bl7) x p(Eely) x p(7), (11)

V13 Ee) x 20 (=57 = X,8) (5 o0 (V" = X5,
(12)

ploh) o A2 exp (35, — )T A3 - ). (13)

PE) x (£ 4P 2 exp (-3 T Y)) . (14)

where Y* =Y — M — T — W is the multiple response series Y
with time series components subtracted out.



MBSTS Model

Posterior Inference

6‘?*72677'\’ NK(B’Y’(XWTX’Y—FA’Y)il)‘ (15)
T Y5, B,y ~ IW(vo + n, E] E, + Vo). (16)
A 12p(7)

Y., V) =C(Z,, Y*)—L
p(7| ) =C( )|XWTX7+A7|1/2

A

1 A
X exp (—2{bﬂz—Awb7 — ZWT(XWTXﬁY + Av)_lz'y}> .

1y 6, Ty ~ AW (Wysr 0+ 0 Ws oo+ AATY. (18)

2pbrw



MBSTS Model

Markov Chain Monte Carlo

MCMC methods are a class of algorithms to sample from a
probability distributions ((15), (16), (17) and (18)) based on
constructing a Markov chain that has the desired distribution as its
equilibrium distribution. The state of the chain after a number of
steps is then used as a sample from the desired distribution.



Model Training

Let

0= (Z,ua 5,2, Zw)
denote the set of state component parameters. Looping through
the five steps yields a sequence of draws

/‘/}: (a707772676)

from a Markov chain with stationary distribution p(]Y), the
posterior distribution of v given Y.



MBSTS

MBSTS Model Training

1:

Draw the latent state oo = ([, 5,%,&)) from given model
parameters and Y, namely p(a|Y,0,~, X, 3), using the
posterior simulation algorithm Durbin and Koopman (2002).
Draw time series state component parameters 6 given «,
namely simulating # ~ p(6|Y, a) based on equation (18).
Loop over i in an random order, draw each ~;|v_j, Y., %,
namely simulating v ~ p(v] Y*, Y..) one by one based on
equation (17), using the stochastic search variable selection
(SSVS) algorithm from George and McCulloch (1997).
Draw  given X, ~, « and Y, namely simulating

B ~ p(B|Ec, 7, Y*) based on equation (15).

Draw X, given v, a, 8 and Y, namely simulating

Y. ~ p(Zc|y, Y*, B) based on equation (16).



MBSTS

Target Series Forecasting Let 4 represents the set of values to
be forecast. The posterior predictive distribution of Y can be
expressed as follows:

p(V]Y) = / p(V (i Y)d, (19)

where ) is the set of all model parameters and latent states
randomly drawn from p(¢)|Y’), then we can draw samples of Y

from p(Y|1).



Applications on Finance

Empirical Analysis

Data: Daily stock price of Bank of America (BOA), Capital One
Financial Corporation (COF), J.P. Morgan (JPM) and Wells Fargo
(WFC).

Time horizon: 11/27/2006 — 11/03/2017

Source: Google Finance.

Purpose: Trade when its future price is predicted to vary more
than p%.

Goal: Forecast the trend of stock movement in the next k(= 5)
days.



Applications on Finance

We approximate the daily average price as: P; = (C; + H: + Lt)/3,
where C;, H; and L; are the close, high, and low quotes for day t
respectively.

However, instead of using the arithmetic returns, we are interested
in the log return V; defined as V; = {Iog(Pt+j/Ct)}J’5:1.
We consider the indicator variable y; = max{v € V;}, the
maximum value of log returns over the next k days.
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Applications on Finance

Fundamental analysis claims that markets may incorrectly price a
security in the short run but will eventually correct it.

H Trend Abbr. Trend Abbr. H
Advertising & marketing advert Air travel airtvl
Auto buyers auto Auto financing autoby
Automotive autofi Business & industrial  bizind
Bankruptcy bnkrpt Commercial Lending  comlind
Computers & electronics  comput Construction constr
Credit cards crcard Durable goods durble
Education educat Finance & investing invest
Financial planning finpln Furniture furntr
Insurance insur Jobs jobs
Luxury goods luxury Mobile & wireless mobile
Mortgage mtge Real estate rlest
Rental rental Shopping shop
Small business smallbiz Travel travel
Unemployment unempl

Table: Google domestic trends



Applications on Finance

Technical analysis claims that useful information is already
reflected in the price of a security. We selected a representative set
of technical indicators to capture the volatility, momentum and
trend, close location value, and potential reversals of each stock.

[ Variable Abbr. ||

Chaikin volatility ChaVol
Yang and Zhang Volatility historical estimator Vol
Arms’ Ease of Movement Value EMV

Moving Average Convergence/Divergence MACD
Money Flow Index MFI

Aroon Indicator AROON
Parabolic Stop-and-Reverse SAR
Close Location Value CLv

Table: Stock Technical Predictors



Applications on Finance
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Figure: True and fitted values of max log return from 11/27/2006 to
10/20/2017 (BOA)
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Applications on Finance

Empirical posterior inclusion probability for the most likely
predictors of max log return.
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Figure: Bank of America Corp. Figure: Capital One Financial Corp.



Applications on Finance

Empirical posterior inclusion probability for the most likely
predictors of max log return.
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Figure: JPMorgan Chase & Co. Figure: Wells Fargo & Co.



Applications on Finance

Cumulative absolute one-step-ahead prediction error.
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Applications on Finance

One-step-ahead predction of max log return.
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Figure: Bank of America Corp. Figure: JPMorgan Chase & Co.



Applications on Finance

One-step-ahead predction of max log return.
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