Towards Explainable AI: Significance Tests for Neural Networks

Kay Giesecke

Advanced Financial Technologies Laboratory
Stanford University

people.stanford.edu/giesecke/
 fintech.stanford.edu

Joint work with Enguerrand Horel (Stanford)

Introduction

- Neural networks underpin many of the best-performing Al systems, including speech recognizers on smartphones or Google's latest automatic translator
- The tremendous success of these applications has spurred the interest in applying neural networks in a variety of other fields including finance, economics, operations, marketing, medicine, and many others
- In finance, researchers have developed several promising applications in risk management, asset pricing, and investment management

Literature

- First wave: single-layer nets
 - Financial time series: White (1989), Kuan & White (1994)
 - Nonlinearity testing: Lee, White & Granger (1993)
 - Economic forecasting: Swanson & White (1997)
 - Stock market prediction: Brown, Goetzmann & Kumar (1998)
 - Pricing kernel modeling: Bansal & Viswanathan (1993)
 - Option pricing: Hutchinson, Lo & Poggio (1994)
 - Credit scoring: Desai, Crook & Overstreet (1996)
- Second wave: multi-layer nets (deep learning)
 - Mortgages: Sirignano, Sadhwani & Giesecke (2016)
 - Order books: Sirignano (2016), Cont and Sirignano (2018)
 - Portfolio selection: Heaton, Polson & Witte (2016)
 - Returns: Chen, Pelger & Zhu (2018), Gu, Kelly & Xiu (2018)
 - Hedging: Bühler, Gonon, Teichmann & Wood (2018)
 - Real estate: Giesecke, Ohlrogge, Ramos & Wei (2018)
 - Optimal stopping: Becker, Cheridito & Jentzen (2018)
 - Treasury markets: Filipovic, Giesecke, Pelger, Ye (2018?)
 - Insurance: Wüthrich and Merz (2019)

Explainability

- The success of NNs is largely due to their amazing approximation properties, superior predictive performance, and their scalability
- A major caveat however is model explainability: NNs are perceived as black boxes that permit little insight into how predictions are being made
- Key inference questions are difficult to answer
 - Which input variables are statistically significant?
 - If significant, how can a variable's impact be measured?
 - What's the relative importance of the different variables?

Explainability matters in practice

This issue is not just academic; it has slowed the implementation of NNs in financial practice, where regulators and other stakeholders often insist on model explainability

- Credit and insurance underwriting
 - Transparency of underwriting decisions
- Investment management
 - Transparency of portfolio designs
 - Economic rationale of trading decisions

This paper

- We develop a pivotal test to assess the statistical significance of the input variables of a NN
 - Focus on single-layer feedforward networks
 - Focus on regression setting
- We propose a gradient-based test statistic and study its asymptotics using nonparametric techniques
 - Asymptotic distribution is a mixture of χ^2 laws
- The test enables one to address key inference issues:
 - Assess statistical significance of variables
 - Measure the impact of variables
 - Rank order variables according to their influence
- Simulation and empirical experiments illustrate the test

Problem formulation

- Regression model $Y = f_0(X) + \epsilon$
 - $X \in \mathcal{X} \subset \mathbb{R}^d$ is a vector of d variables with law P
 - $f_0: \mathcal{X} \to \mathbb{R}$ is an unknown deterministic C^1 -function
- To assess the significance of a variable X_j , we propose to test the following hypotheses:

$$H_0: \quad \lambda_j := \int_{\mathcal{X}} \left(\frac{\partial f_0(x)}{\partial x_j}\right)^2 d\mu(x) = 0$$
 $H_A: \quad \lambda_j \neq 0$

Here, μ is a positive weight measure

• A typical choice is $\mu=P$ and then $\lambda_j=\mathbb{E}[(\frac{\partial f_0(X)}{\partial x_j})^2]$

Intuition

• Suppose the function f_0 is linear (multiple linear regression)

$$f_0(x) = \sum_{k=1}^d \beta_k x_k$$

Then $\lambda_j \propto \beta_j^2$, the squared regression coefficient for X_j , and the null takes the form $H_0: \beta_j = 0 \ (\to t\text{-test})$

• In the general nonlinear case, the derivative $\frac{\partial f_0(x)}{\partial x_j}$ depends on x, and $\lambda_j = \int_{\mathcal{X}} (\frac{\partial f_0(x)}{\partial x_j})^2 d\mu(x)$ is a weighted average

Neural network

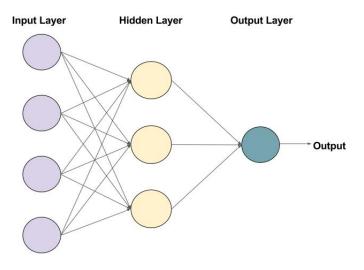
- We study the case where the unknown regression function f_0 is modeled by a single-layer feedforward NN
- A **single-layer NN** f is specified by a bounded *activation* function ψ on \mathbb{R} and the number of hidden units K:

$$f(x) = b_0 + \sum_{k=1}^{K} b_k \psi(a_{0,k} + a_k^{\top} x)$$

where $b_0, b_k, a_{0,k} \in \mathbb{R}$ and $a_k \in \mathbb{R}^d$ are to be estimated

• Functions of the form f are dense in $C(\mathcal{X})$ (they are *universal approximators*): choosing K large enough, f can approximate f_0 to any given precision

Neural network with K = 3 hidden units



Sieve estimator of neural network

- We use n i.i.d. samples (Y_i, X_i) to construct a sieve M-estimator f_n of f for which $K = K_n$ increases with n
- We assume $f_0 \in \Theta = \text{class of } C^1$ functions on d-hypercube $\mathcal X$ with uniformly bounded Sobolev norm
- Sieve subsets $\Theta_n \subseteq \Theta$ generated by NNs f with K_n hidden units, bounded L^1 norms of weights, and sigmoid ψ
- The sieve M-estimator f_n is the approximate maximizer of the empirical criterion function $L_n(g) = \frac{1}{n} \sum_{i=1}^n I(Y_i, X_i, g)$, where $I : \mathbb{R} \times \mathcal{X} \times \Theta \to \mathbb{R}$, over Θ_n :

$$L_n(f_n) \ge \sup_{g \in \Theta_n} L_n(g) - o_P(1)$$

Neural network test statistic

• The NN test statistic is given by

$$\lambda_j^n = \int_{\mathcal{X}} \left(\frac{\partial f_n(x)}{\partial x_j} \right)^2 d\mu(x) = \phi[f_n]$$

- We will use the asymptotic $(n \to \infty)$ distribution of λ_j^n for testing the null since a bootstrap approach would typically be too computationally expensive
- In the large-n regime, due to the universal approximation property, we are actually performing inference on the "ground truth" f_0 (model-free inference)

Asymptotic distribution of NN estimator

Theorem

Assume that

- $dP = \nu d\lambda$ for bounded and strictly positive ν
- The dimension K_n of the NN satisfies $K_n^{2+1/d} \log K_n = O(n)$,
- The loss function $I(Y_i, X_i, g) = -\frac{1}{2}(Y_i g(X_i))^2$.

Then

$$r_n(f_n-f_0) \Longrightarrow h^*$$

in $(\Theta, L^2(P))$ where

$$r_n = \left(\frac{n}{\log n}\right)^{\frac{d+1}{2(2d+1)}}$$

and h^* is the argmax of the Gaussian process $\{\mathbb{G}_f : f \in \Theta\}$ with mean zero and $Cov(\mathbb{G}_s, \mathbb{G}_t) = 4\sigma^2\mathbb{E}(s(X)t(X))$.

Comments

• r_n is the **estimation rate** of the NN (Chen and Shen (1998)):

$$\mathbb{E}_X[(f_n(X) - f_0(X))^2] = O_P(r_n^{-1})$$

assuming the number of hidden units K_n is chosen such that $K_n^{2+1/d} \log K_n = O(n)$

- Outline of proof
 - Estimation rate implies tightness of $h_n = r_n(f_n f_0)$
 - Rescaled and shifted criterion function converges weakly to Gaussian process
 - Gaussian process has a unique maximum at h^*
 - Argmax continuous mapping theorem

Asymptotic distribution of test statistic

Theorem 1

Under the conditions of Theorem 1 and the null hypothesis,

$$r_n^2 \lambda_j^n \Longrightarrow \int_{\mathcal{X}} \left(\frac{\partial h^*(x)}{\partial x_i} \right)^2 d\mu(x)$$

Empirical test statistic

Theorem

Assume $\mu = P$ so that the test statistic

$$\lambda_j^n = \mathbb{E}_X \left[\left(\frac{\partial f_n(X)}{\partial x_j} \right)^2 \right].$$

Under the conditions of Theorem 1 and the null hypothesis, the empirical test statistic satisfies

$$r_n^2 n^{-1} \sum_{i=1}^n \left(\frac{\partial f_n(X_i)}{\partial x_j} \right)^2 \Longrightarrow \mathbb{E}_X \left[\left(\frac{\partial h^*(X)}{\partial x_j} \right)^2 \right]$$

Identifying the asymptotic distribution

Theorem

Take $\mu = P$. If Θ admits an orthonormal basis $\{\phi_i\}$ that is C^1 and stable under differentiation, then

$$\mathbb{E}_{X}\left[\left(\frac{\partial h^{\star}(X)}{\partial x_{j}}\right)^{2}\right] \stackrel{d}{=} \frac{B^{2}}{\sum_{i=0}^{\infty} \frac{\chi_{i}^{2}}{d_{i}^{2}}} \sum_{i=0}^{\infty} \frac{\alpha_{i,j}^{2}}{d_{i}^{4}} \chi_{i}^{2},$$

where $\{\chi_i^2\}$ are i.i.d. samples from the chi-square distribution, and where $\alpha_{i,j} \in \mathbb{R}$ satisfies $\frac{\partial \phi_i}{\partial x_j} = \alpha_{i,j} \phi_{k(i)}$ for some $k : \mathbb{N} \to \mathbb{N}$, and the d_i 's are certain functions of the $\alpha_{i,j}$'s.

Implementing the test

- Truncate the infinite sum at some finite order N
- Draw samples from the χ^2 distribution to construct a sample of the approximate limiting law
- Repeat m times and compute the empirical quantile $Q_{N,m}$ at level $\alpha \in (0,1)$ of the corresponding samples
 - If $m=m_N\to\infty$ as $N\to\infty$, then Q_{N,m_N} is a consistent estimator of the true quantile of interest
- Reject H_0 if $\lambda_j^n > Q_{N,m_N}(1-\alpha)$ such that the test will be asymptotically of level α :

$$\mathbb{P}_{H_0}(\lambda_j^n > Q_{N,m_N}(1-\alpha)) \le \alpha$$

Simulation study

• 8 variables:

$$X = (X_1, \ldots, X_8) \sim U(-1, 1)^8$$

• Ground truth:

$$Y = 8 + X_1^2 + X_2X_3 + \cos(X_4) + \exp(X_5X_6) + 0.1X_7 + \epsilon$$

where $\epsilon \sim N(0, 0.01^2)$ and X_8 has no influence on Y

- Training (via TensorFlow): 100,000 samples (Y_i, X_i) Testing: 10,000 samples
- Out-of-sample MSE:

Model	Mean Squared Error
Linear Regression	0.35
NN with $K = 25$	$3.1\cdot 10^{-4} \sim Var(\epsilon)$

Linear model fails to identify significant variables

Variable	coef	std err	t	P > t
const	10.2297	0.002	5459.250	0.000
1	-0.0031	0.003	-0.964	0.335
2	0.0051	0.003	1.561	0.118
3	-0.0026	0.003	-0.800	0.424
4	0.0003	0.003	0.085	0.932
5	0.0016	0.003	0.493	0.622
6	-0.0033	0.003	-1.035	0.300
7	0.0976	0.003	30.059	0.000
8	-0.0018	0.003	-0.563	0.573

Only the intercept and the linear term $0.1X_7$ are identified as significant. The irrelevant X_8 is correctly identified as insignificant.

NN test statistic (5% level; 100 experiments; Fourier basis)

Input Variable	Test Statistic	Power / Size
1	1.310	1
2	0.332	1
3	0.331	1
4	0.267	1
5	0.480	1
6	0.479	1
7	$1.010 \cdot 10^{-2} \ (= 0.1^2)$	1
8	$4.200 \cdot 10^{-6}$	0.13

The asymptotic distribution tends to underestimate the variance of the finite sample distribution of the test statistic.

Application: House price valuation

- Data: 120+ million housing sales from county registrar of deed offices across the US (source: CoreLogic)
- Sample period: 1970 to 2017
- Geographical area: Merced County, CA; 76,247 samples
- **Prediction** of $Y = \log$ sale price
- Variables X: Bedrooms, Full_Baths, Last_Sale_Amount, N_Originations, N_Past_Sales, Sale_Month, SqFt, Stories, Tax_Amount, Time_Since_Prior_Sale, Year_Built
- Training and gradients via TensorFlow
- Cross validation (80-20 split) suggests K = 50 nodes
- Test MSE is 0.60 vs. 0.85 for linear baseline model

Application: House price valuation

Application: House price valuation

Variable	Test Statistic
$Sale_Month$	2.660
$Last_Sale_Amount$	0.768
N_Past_Sales	0.705
Year_Built	0.197
Tax_Amount	0.182
SqFt	0.088
Time_Since_Prior_Sale	0.061
Bedrooms	0.047
$Full_Baths$	0.043
Stories	0.028
N_{-} Originations	0.0003

All variables but N_Originations are significant at the 5% level.

Conclusion

- We develop a statistical significance test for neural networks
- The test enables one to assess the impact of feature variables on the network's prediction, and to rank variables according to their predictive importance
- We believe this is a significant step towards making neural nets explainable, and hope that it enables a broader range of applications in (financial) practice
- Ongoing work
 - Treatment of NN classifiers
 - Treatment of deep networks
 - Treatment of more complex network architectures
 - Cross derivatives for testing interactions between variables

Example

- ullet Suppose the elements of X are i.i.d. uniform on [-1,1]
- Using the Fourier basis, the limiting distribution takes the form

$$\frac{B^2}{\sum_{n\in\mathbb{N}^d}\frac{\chi_n^2}{d_n^2}}\sum_{n\in\mathbb{N}^d}\frac{n_j^2\pi^2}{d_n^4}\chi_n^2,$$

- $n = (n_1, n_2 \ldots, n_j, \ldots, n_d)$
- $d_n^2 = \sum_{|\alpha| < |\frac{d}{2}|+2} \prod_{k=1}^d (n_{n_k} \pi)^{2\alpha_k}$
- $\{\chi_n^2\}_{n\in\mathbb{N}^d}$ are i.i.d. chi-square variables

Computing the asymptotic distribution

- We note that Θ is a subspace of the Hilbert space $L^2(P)$ which admits an orthonormal basis $\{\phi_i\}_{i=0}^{\infty}$
- If this basis is C^1 and stable under differentiation, i.e. if there are a real $\alpha_{i,j}$ and a mapping $k : \mathbb{N} \to \mathbb{N}$ such that

$$\frac{\partial \phi_i}{\partial x_j} = \alpha_{i,j} \phi_{k(i)},$$

then there exists an invertible operator D such that

$$||f||_{k,2}^2 = ||Df||_{L^2(P)}^2 = \sum_{i=0}^{\infty} d_i^2 \langle f, \phi_i \rangle_{L^2(P)}^2$$

where the $d_i's$ are certain functions of the $\alpha_{i,j}$'s