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Motivation

How do companies decide on their dividend policy?

Tradeoff: Paying out more dividends would increase a company’s worth in
the eyes of its shareholders, while doing so would also reduce future reserves
that are essential during financial hardships

Classical optimal dividend literature starts with De Finetti (1957)

See Avanzi (2009) for a survey

Asmussen and Taksar (1997), Gerber and Shiu (2006)

Surplus is a Brownian motion with drift

The objective is to maximize the expected discounted dividend
payments until bankruptcy

Case I: dividend rate is restricted to [0, C0]
Pay dividends at rate 0 if surplus is lower than some value X∗ and at
rate C0 if surplus is greater than X∗

Case II: dividend rate is unrestricted
Payout any surplus in excess of a barrier b
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Motivation

Following a barrier strategy results in a volatile all-or-nothing path for
dividend stream

Shareholders and analysts react negatively (and arguably overreact) when
the rate of dividend payment decreases

We propose a way to smooth the rate of dividend payments by
requiring that the rate of dividend payments to never fall below a fraction of
its historical maximum rate

This requirement is different from most drawdown constraints in the
literature, which apply to the surplus or wealth itself
e.g. Grossman and Zhou (1993), Cvitanić and Karatzas (1995), and Elie and
Touzi (2008)
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Problem Setup

An optimal consumption problem, until bankruptcy, with a drawdown
constraint on consumption

A company is deciding on its investment and dividend policies

Investment policy:
For simplicity, we assume the number of shares to be fixed
only bonds are issued or bought back

πt: total asset at t

Xt: total equity at t, also called the “surplus”

πt −Xt: total debt
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Problem Setup

Dividend policy: dividend is paid at rate Ct $/yr from the surplus
Total dividend paid over [t, t+ ε] is

∫ t+ε
t

Cudu

Dividend policy is subject to two constraints

(i) The dividend rate must be higher than the interest rate

ct := Ct − rXt > 0; t ≥ 0

(ii) The drawdown constraint: ct ≥ α zt; t ≥ 0

zt := max
{
z, sup

0≤s<t

cs
}
, z > 0 and 0 < α ≤ 1

Dividend rate is allowed to increase beyond its historical peak in which
case ct > zt
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Problem Setup

Surplus evolves according to

dXt = πt
dIt
It

+
(
r(Xt − πt)− Ct

)
dt =

(
µπt − ct

)
dt+ σπt dWt,

where {It}, the “intrinsic value” of the company, is a GBM

dIt
It

= (µ+ r)dt+ σdWt

(Wt)t≥0 is a Brownian motion on (Ω,F, (Ft)t≥0,P)

(πt, ct)t≥0 is admissible if:

(i) (πt)t≥0 is (Ft)-progressively measurable and satisfies πt ≥ 0 and
∫∞

0
π2
t dt <∞,

P–almost surely

(ii) (ct)t≥0 is (Ft)-adapted, non-negative, and right-continuous with left limits; and

(iii) ct ≥ α zt, t ≥ 0, where zt := max
{
z, sup

0≤s<t

cs
}

C(α, z): the set all admissible policies
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Problem Setup

Objective:

sup
(πt,ct)∈C(α,z)

E

[∫ τ

0
e−δt c

1−p
t

1− p dt
]
.

τ = τX
(πt,ct)

:= inf
{
t ≥ 0 : Xt ≤ 0

}
is the time of bankruptcy

For α, z > 0, we have ct > 0 and thus bankruptcy is “not avoidable”
P(τ <∞) > 0

δ > 0: subjective time preference, larger values indicates more impatient
shareholders



Introduction and Setup Optimal Dividend Policy HJB and Verification References Illustrations

Problem Setup

p is the constant relative risk aversion, satisfying 1
2 σ2
µ2 δ+1

< p < 1, reason:

0 ≤ p ≤ 1
2 σ2
µ2 δ+1

leads to infinite expectation, e.g. Merton (1969)

p ≥ 1: How to “penalize” bankruptcy? Two suggestions:∫ τ
0 e−δt

c
1−p
t

1−p dt −→ τ <∞ is rewarded! Immediate liquidation is optimal∫∞
0 e−δt

c
1−p
t

1−p dt −→ τ <∞ is penalized by −∞, the problem is infeasible

Note that c
1−p
t

1−p →∞ as p→ 1
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Optimal Dividend Policy

The optimal dividend policy depends on (Xt) and (zt) or, more specifically,
the value of the “surplus-to-historical peak” ratio Xt/zt

There exist constants 0 < wα < w1 < w∗ such that:

(a) If Xt < wαzt, then ct = αzt

(b) If wαzt < Xt < w1zt, then ct = c∗(Xt, zt) ∈ (αzt, zt), for some function
c∗(x, z)

(c) If w1zt ≤ Xt < w∗zt, then ct = zt

(d) If Xt > w∗zt, then ct = Xt
w∗ > zt

In this case, the historical peak has a jump at t, that is,
lims→t+ zs = Xt

w∗ > zt

(e) Along the line x = w∗z, the company increases its dividend rate via
singular control to keep Xt ≤ w∗zt
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Optimal Dividend Policy

z

x

(a): c∗ = α z

x = wα z
(b): α z

< c∗ <
z

x = w1 z
(c): c∗ = z

x = w∗ z

(d): c∗ =
x

w∗ (e)

Five regions in the zx-plane for the optimal dividend policy

µ = 0.0800, σ = 0.2000, κ = 12.5000, α = 0.5000,
δ = 0.2000, p = 0.8000, wα = 3.7030, w1 = 5.5947, w∗ = 11.2992
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Optimal Dividend Policy

(zt) can have a jump only at time t = 0 and only if rule (d) is applicable,
that is, X0 > w∗z0

Afterwards, the process (Xt, zt)t≥0 will be kept in the domain
D = {(x, z) : 0 ≤ x ≤ w∗z, z > 0}

In particular, (zt) is only allowed to increase via singular control in order to
keep (Xt, zt) inside D

As a consequence of the optimal policy, M∗t = w∗zt; t > 0

where M∗t := max
{
M0, max0≤s<tX

∗
s

}
and M∗0 = w∗z0

The running max of (the optimally controlled) surplus is proportional to the
historical consumption peak
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Plots of the Optimal Policy

0.0 2.5 5.0 7.5 10.0 12.5
x

0

10

20

30

π∗(x, 1) Plot of π∗(x, 1) vs. x

0 10 20 30
x

0

20

40

60

80

π∗(x, z) Plot of π∗(x, 1) and π∗(x, 3) vs. x

π∗(x, 1)

π∗(x, 3)

π∗ = − µ
σ2

Uw(w∗)
w∗ Uww(w∗) x

0.0 2.5 5.0 7.5 10.0 12.5
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

c∗(x, 1) Plot of c∗(x, 1) vs. x

0 10 20 30
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

c∗(x, z) Plot of c∗(x, 1) and c∗(x, 3) vs. x

c∗(x, 1)

c∗(x, 3)

c∗ = x
w∗

µ = 0.0800, σ = 0.2000, κ = 12.5000, α = 0.5000, δ = 0.2000, p = 0.8000, wα = 3.7030, w1 = 5.5947, w∗ = 11.2992

0.0 2.5 5.0 7.5 10.0 12.5
x

0

10

20

30

π∗(x, 1) Plot of π∗(x, 1) vs. x

0 10 20 30
x

0

20

40

60

80

π∗(x, z) Plot of π∗(x, 1) and π∗(x, 3) vs. x

π∗(x, 1)

π∗(x, 3)

π∗ = − µ
σ2

Uw(w∗)
w∗ Uww(w∗) x

0.0 2.5 5.0 7.5 10.0 12.5
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

c∗(x, 1) Plot of c∗(x, 1) vs. x

0 10 20 30
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

c∗(x, z) Plot of c∗(x, 1) and c∗(x, 3) vs. x

c∗(x, 1)

c∗(x, 3)

c∗ = x
w∗

µ = 0.0800, σ = 0.2000, κ = 12.5000, α = 0.5000, δ = 0.2000, p = 0.8000, wα = 3.7030, w1 = 5.5947, w∗ = 11.2992



Introduction and Setup Optimal Dividend Policy HJB and Verification References Illustrations

HJB

Value function: V (x, z) = sup(πt,ct)∈C(α,z) E
x
[∫ τ

0 e−δt c
1−p
t

1−p dt
]

HJB equation:
δv = max

π∈R

[
µπvx + 1

2 σ
2π2vxx

]
+ max
αz≤c≤z

[
c1−p

1− p − cvx
]

v(0, z) = 0

vz(w∗z, z) = 0 = vxz(w∗z, z)

The last conditions are the “smooth-pasting” and “super-contact” conditions

See, for example, Dixit (1991) and Dumas (1991)
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Dimension Reduction

V (x, z) is homogeneous of degree 1− p with respect to x and z

V (βx, βz) = β1−pV (x, z); β > 0

Using the ansatz V (x, z) = z1−pU(x/z) leads to
δU = max

π̂∈R

[
µπ̂Uw + 1

2 σ
2π̂2Uww

]
+ max
α≤ĉ≤1

[
ĉ1−p

1− p − ĉUw
]

U(0) = 0
(1− p)U(w∗)− w∗Uw(w∗) = 0
pUw(w∗) + w∗Uww(w∗) = 0

Once we obtained π̂∗ and ĉ∗, we get π∗ and c∗ via

π∗(x, z) = π̂∗(x/z)z and c∗(x, z) = ĉ∗(x/z)z
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Legendre Transform

Assuming U is increasing and concave with respect to w

1
κ

U2
w

Uww
+ δU =



α1−p

1− p − αUw, 0 ≤ w ≤ wα

p

1− p
(
Uw(w)

)− 1−p
p , wα < w < w1

1
1− p − Uw, w1 ≤ w ≤ w∗

Here, κ := 2σ2

µ2 and wα and w1 are free boundaries satisfying

Uw(wα) = α−p and Uw(w1) = 1

We can linearize the equation by applying the Legendre transform
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Legendre Transform

Define y0 := Uw(0) ≥ α−p, y∗ := Uw(w∗) ≤ 1, and

Û(y) := sup
0<w<w∗

{U(w)− wy}; y∗ ≤ y ≤ y0

Û satisfies:

y2Ûyy + κδyÛy − κδÛ =



κ

(
αy − α1−p

1− p

)
, α−p ≤ y ≤ y0

− κp

1− p y
− 1−p

p , 1 < y < α−p

κ

(
y − 1

1− p

)
, y∗ ≤ y ≤ 1

Û(y0) = 0 = Ûy(y0)

(1− p)Û(y∗) + py∗Ûy(y∗) = 0

Ûy(y∗) + py∗Ûyy(y∗) = 0
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Solution: Û

Lemma (y0 and y∗)
There exist unique constants η∗ = y0α

p > 1 and 0 < y∗ < 1 that solves
the system:

ln η
α

y
+ α

η(1− p) −
1
y

= α(1 + p)− 1

α1−p(1+κδ)(p(1 + κδ)− 1
)( κ

1 + κδ
η1+κδ − 1

δ(1− p) η
κδ

)

+
(

κ

1 + κδ
y1+κδ − 1

δ
yκδ
)

= α1−p(1+κδ) − 1
δ(1 + κδ)
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Solution: Û

Proposition (Û)

Û is given by

Û(y) =



C1y + C2y
−κδ + κα

1 + κδ
y ln y + α1−p

δ(1− p) , α−p ≤ y ≤ y0

C3y + C4y
−κδ + κ

1− p
p3

p(1 + κδ)− 1 y
− 1−p

p 1 < y < α−p

C5y + C6y
−κδ + κ

1 + κδ
y ln y + 1

δ(1− p) , y∗ ≤ y ≤ 1

with C1, . . . , C6 given in the next slide.

Moreover, Û is strictly decreasing and strictly convex with continuous
second derivative on (y∗, y0).
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Solution: Û

C1 = −
κα

1 + κδ

(
ln η∗ − p lnα+

1
η∗(1− p)

+
1

1 + κδ

)
C2 =

α1−p(1+κδ)

1 + κδ

(
κ

1 + κδ
(η∗)1+κδ −

1
δ(1− p)

(η∗)κδ
)
> 0

C3 = −
κα

1 + κδ

(
ln η∗ +

1
η∗(1− p)

− (1 + p)
)

C4 =
α1−p(1+κδ)

1 + κδ

(
κ

1 + κδ
(η∗)1+κδ −

1
δ(1− p)

(η∗)κδ −
1

δ(1 + κδ)
(
p(1 + κδ)− 1

)) < 0

C5 = −
κ

1 + κδ

(
α ln η∗ +

α

η∗(1− p)
+ (1− α)(1 + p) +

1
1 + κδ

)
C6 =

α1−p(1+κδ)

1 + κδ

(
κ

1 + κδ
(η∗)1+κδ −

1
δ(1− p)

(η∗)κδ
)
−

α1−p(1+κδ) − 1
δ(1 + κδ)2

(
p(1 + κδ)− 1

) > 0
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Solution: V

We find U(w) by reversing the Legendre transform

U(w) = Û(y)− yÛy(y), where y ∈ [y∗, y0] uniquely solves Ûy(y) = −w

We then find the (candidate) value function V (x, z) = z1−pU(x/z)

The critical values wα, w1, and w∗ are given by

wα = κα

1 + κδ

{
ln η∗ +

(
κδ

1 + κδ
− 1
η∗(1− p)

)(
(η∗)1+κδ − 1

)}
w1 = κ

1 + κδ

{
ln y∗ + p+

(
1
y∗
− κδ

1 + κδ

)(
1 + (y∗)1+κδ

p(1 + κδ)− 1

)}
w∗ = κp

p(1+κδ)−1

{
1
y∗
− (1− p)

}
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Solution: Optimal Investment and Dividend Policy

For 0 ≤ x ≤ w∗z: Let y ∈ [y∗, y0] be the unique solution of Ûy(y) = −x/z

π∗(x, z) = − µ

σ2
zUw(x/z)
Uww(x/z) = µ

σ2 zyÛyy(y)

c∗(x, z) =


αz, 0 ≤ x ≤ wαz,

y
− 1
p z, wαz < x < w1z,

z, w1z ≤ x < w∗z.

For x > w∗z:

π∗(x, z) = − µ

σ2
Uw(w∗)

w∗Uww(w∗) x = µ

σ2
y∗

w∗
Ûyy(y∗)x

c∗(x, z) = x

w∗
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Verification

To verify the solution, we need to show that, for all x, z ≥ 0, π ∈ R, and c ≥ αz

(i) vz(x, z) ≤ 0

(ii)
1
2
σ2π2vxx(x, z) + (µπ − c)vx(x, z)− δv(x, z) +

c1−p

1− p
≤ 0

(iii) the “transversality condition:” lim inf
n→∞

Ex
(

e−δτnv(Xτn , zτn )
)

= 0

{τn}∞n=1 is a sequence of bounded stopping times satisfying τn →∞ P-a.s.

(iv) max
[
vz ,

1
2 σ

2(π∗)2vxx + (µπ∗ − c∗)vx + (c∗)1−p

1−p − δv
]

= 0; x, z > 0

(v) The following SDE has a unique strong solution
dX∗t =

(
µπ∗(X∗t , z∗t )− c∗(X∗t , z∗t )

)
dt+ σπ∗(X∗t , z∗t ) dWt; t ≥ 0,

z∗t = max
{
z, sup

0≤s<t
c∗(X∗s , z∗s )

}
; t ≥ 0,

X∗0 = x,

and
(
π∗(X∗t , z∗t ), c∗(X∗t , z∗t )

)
is admissible
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Verification

Thank you for your attention!
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Plot of the Value Function
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Sensitivity of the Free Boundaries w.r.t. α
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Sensitivity of the Value function w.r.t. α

x

0
5

10
15

20
25

30

α

0.0
0.2

0.4
0.6

0.8
1.0

V (x, 1)

5
10
15
20
25
30

Plot of V (x, 1) vs. x and 0 < α < 1

0 10 20 30

x

0

5

10

15

20

25

30

V (x, 1)

Plot of V (x, 1) for three values of α

α = 0.00

α = 0.50

α = 1.00

µ = 0.0800, σ = 0.2000, κ = 12.5000, δ = 0.2000



Introduction and Setup Optimal Dividend Policy HJB and Verification References Illustrations

Sensitivity of the Optimal Policy w.r.t. α
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Sensitivity of the Value Function w.r.t. p
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