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LO specifies a price and a quantity
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MO specifies only a quantity

→ price inelastic demand

Trade means MO executes against LO
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The Model

Single asset in zero net supply

Smooth trading on an infinite horizon

Two types of traders:

N Market Makers (MMs)
Liquidity Traders (LTs)

Trades occur at a uniform price pt to be determined endogenously
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The Model

LTs inventory is −St , where

dSt = Ftdt

dFt = −ψFtdt + σFdBF
t , ψ > 0

MMs inventories evolve according to

dX n
t = qn

t dt

where qn
t will be determined endogenously

MMs cash evolves according to

dCn
t = −qn

t ptdt
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MM Objectives

MMs valuation of the stock is exogenously given as Dt where

dDt = µdt + σDdBD
t

and {BD
t } is independent of {BF

t }

MMs marked-to-market wealth is

W n
t = Cn

t + X n
t Dt

MMs want to maximize

E
[ ∫ ∞

0
e−ρt

(
dW n

t −
γ

2
d〈W n〉t

)]
=

E
[ ∫ ∞

0
e−ρt

(
− qn

t (pt − Dt) + µX n
t −

γσ2D
2

(X n
t )2
)

dt

]
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The Trading Mechanism

At time t each MM submits a demand schedule of the form

αn
t − βnt qn

t = pt

pt and qn
t are then given implicitly by the N + 1 equations

αn
t − βnt qn

t = pt

q1
t + · · ·+ qN

t = Ft

Price and trades are set in Nash equilibrium
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Equilibrium Concept

A profile α1
t , β

1
t , · · · , αN

t , β
N
t is admissible if

1 βn
t > 0 a.s.

2 E[e−ρt(X n
t )2]→ 0 as t →∞

3 αn
t , β

n
t ∈ σ

(
{Ds}0≤s≤t , {ps}0≤s<t , {X n

s }0≤s≤t , {qn
s }0≤s<t ,S0

)

A profile is linear and symmetric

if ∃ a < 0, e > 0, and b, c , ξ ∈ R
s.t.

αn
t = aX n

t + bDt + cSt + ξ

βnt = e

Will focus on linear symmetric Nash equilibrium
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Explicit Equilibrium

Theorem

If N ≥ 3 then there is a unique linear symmetric Nash equilibrium. In
equilibrium the price is

pt = Dt +
µ

ρ
− 1

ρ

γ

N
σ2DSt −

γ

N

N − 1

N − 2

σ2D
ρ+ ψ

(1

δ
+

1

ρ

)
Ft

and trading rates are

qn
t = −κ

(
X n
t −

St

N

)
+

1

N
Ft

where

κ = ρ(N − 2)
ρ+ ψ

ρ+ δ

δ =
√
ρ2 + 2ρ(ρ+ ψ)(N − 2)
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Sketch of Proof

On equilibrium

p̂t =
a

N
St + bDt + cSt + ξ − e

N
Ft

q̂n
t =

a

e

(
X̂ n
t −

St

N

)
+

1

N
Ft

Off equilibrium

pt =
a

N − 1
(St − Xt) + bDt + cSt + ξ − e

N − 1
(Ft − qt)

pt = αt − βtqt
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Sketch of Proof

Optimize directly over {qt}

Almgren-Chriss type problem

pt =
a

N − 1
St + bDt + cSt + ξ − e

N − 1
Ft −

a

N − 1
Xt +

e

N − 1
qt

= Mt + ΛXt + λqt

Dynamic Programming, HJB, Feedback Controller

2e

N − 1
q̂ = Vx −

[( a

N − 1
+ c
)

s − a

N − 1
x + (b− 1)d + ξ − e

N − 1
f

]
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Interpreting the Price

pt = Dt +
µ

ρ
− 1

ρ

γ

N
σ2DSt −

γ

N

N − 1

N − 2

σ2D
ρ+ ψ

(1

δ
+

1

ρ

)
Ft

First term is MMs current asset valuation

Second term is a premium for expected valuation growth

Third term is a discount to compensate MMs for bearing risk

Fourth term captures liquidity

Definition

Price Impact := γ
N

N−1
N−2

σ2
D

ρ+ψ

(
1
δ + 1

ρ

)
Liquidity := 1

Price Impact
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Comparative Statics for Liquidity

Proposition

1 ∂
∂γLiquidity < 0.
Liquidity is decreasing in market makers’ risk aversion.

2 ∂
∂σD

Liquidity < 0.
Liquidity is decreasing in fundamental volatility.

3 If γ
N is held fixed then ∂

∂N Liquidity > 0.
Liquidity is increasing in market maker competition.

4 ∂
∂ψLiquidity > 0.
Liquidity is decreasing in order flow risk.
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Limiting Cases

Price Impact → 0 as ψ →∞

Price Impact → γ0
ρ

σ2
D

ρ+ψ as N →∞ with γ
N = γ0 fixed

In both cases the price is asymptotic to

Dt +
µ

ρ
− Et

[ ∫ ∞
t

e−ρ(T−t)γ0σ
2
DSTdT

]
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Interpreting the Trading Rates

qn
t = −κ

(
X n
t −

St

N

)
+

1

N
Ft

MMs aggregate time t inventory is St

The efficient allocation is for each MM to hold St
N

Second term says that new supply shocks are absorbed efficiently

First term says that existing misallocations move towards efficiency

X n
t =

St

N
+ e−κt

(
X n
0 −

S0

N

)

Definition

Rate of Convergence to Efficiency := κ := ρ(N − 2)ρ+ψρ+δ
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