Imperfect Competition Among Liquidity Providers

Angad Singh

Caltech

November 2018

Table of Contents

(1) Motivation \& Related Work
(2) The Model
(3) Equilibrium Characterization

4 Equilibrium Analysis
(5) Summary

Table of Contents

(1) Motivation \& Related Work

(2) The Model

(3) Equilibrium Characterization
4) Equilibrium Analysis
(5) Summary

Motivation

Motivation

Motivation

- LO specifies a price and a quantity

Motivation

- LO specifies a price and a quantity
- MO specifies only a quantity

Motivation

- LO specifies a price and a quantity
- MO specifies only a quantity
- Trade means MO executes against LO

Motivation

- LO specifies a price and a quantity \rightarrow price elastic demand
- MO specifies only a quantity
- Trade means MO executes against LO

Motivation

- LO specifies a price and a quantity \rightarrow price elastic demand
- MO specifies only a quantity \rightarrow price inelastic demand
- Trade means MO executes against LO

Related Work

Related Work

- Grossman-Miller (1985)

Related Work

- Grossman-Miller (1985)
- Kyle (1989)

Related Work

- Grossman-Miller (1985)
- Kyle (1989)
- Almgren \& Chriss (2001), Cartea \& Jaimungal

Related Work

- Grossman-Miller (1985)
- Kyle (1989)
- Almgren \& Chriss (2001), Cartea \& Jaimungal
- Garleanu \& Pedersen (2016)

Related Work

- Grossman-Miller (1985)
- Kyle (1989)
- Almgren \& Chriss (2001), Cartea \& Jaimungal
- Garleanu \& Pedersen (2016)
- Bouchard, Fukasawa, Herdegen \& Muhle-Karbe (2018)

Related Work

- Grossman-Miller (1985)
- Kyle (1989)
- Almgren \& Chriss (2001), Cartea \& Jaimungal
- Garleanu \& Pedersen (2016)
- Bouchard, Fukasawa, Herdegen \& Muhle-Karbe (2018)
- Rostek \& Wretka (2015)

Related Work

- Grossman-Miller (1985)
- Kyle (1989)
- Almgren \& Chriss (2001), Cartea \& Jaimungal
- Garleanu \& Pedersen (2016)
- Bouchard, Fukasawa, Herdegen \& Muhle-Karbe (2018)
- Rostek \& Wretka (2015)
- Sannikov \& Skrzypacz (2016)

Related Work

- Grossman-Miller (1985)
- Kyle (1989)
- Almgren \& Chriss (2001), Cartea \& Jaimungal
- Garleanu \& Pedersen (2016)
- Bouchard, Fukasawa, Herdegen \& Muhle-Karbe (2018)
- Rostek \& Wretka (2015)
- Sannikov \& Skrzypacz (2016)
- Ma, Wang \& Zhang (2015)

Table of Contents

(1) Motivation \& Related Work

(2) The Model

(3) Equilibrium Characterization

4 Equilibrium Analysis
(5) Summary

The Model

The Model

- Single asset in zero net supply

The Model

- Single asset in zero net supply
- Smooth trading on an infinite horizon

The Model

- Single asset in zero net supply
- Smooth trading on an infinite horizon
- Two types of traders:

The Model

- Single asset in zero net supply
- Smooth trading on an infinite horizon
- Two types of traders:
- N Market Makers (MMs)

The Model

- Single asset in zero net supply
- Smooth trading on an infinite horizon
- Two types of traders:
- N Market Makers (MMs)
- Liquidity Traders (LTs)

The Model

- Single asset in zero net supply
- Smooth trading on an infinite horizon
- Two types of traders:
- N Market Makers (MMs)
- Liquidity Traders (LTs)
- Trades occur at a uniform price p_{t} to be determined endogenously

The Model

The Model

- LTs inventory is $-S_{t}$, where

$$
\begin{aligned}
& d S_{t}=F_{t} d t \\
& d F_{t}=-\psi F_{t} d t+\sigma_{F} d B_{t}^{F}, \quad \psi>0
\end{aligned}
$$

The Model

- LTs inventory is $-S_{t}$, where

$$
\begin{aligned}
& d S_{t}=F_{t} d t \\
& d F_{t}=-\psi F_{t} d t+\sigma_{F} d B_{t}^{F}, \quad \psi>0
\end{aligned}
$$

- MMs inventories evolve according to

$$
d X_{t}^{n}=q_{t}^{n} d t
$$

The Model

- LTs inventory is $-S_{t}$, where

$$
\begin{aligned}
& d S_{t}=F_{t} d t \\
& d F_{t}=-\psi F_{t} d t+\sigma_{F} d B_{t}^{F}, \quad \psi>0
\end{aligned}
$$

- MMs inventories evolve according to

$$
d X_{t}^{n}=q_{t}^{n} d t
$$

where q_{t}^{n} will be determined endogenously

The Model

- LTs inventory is $-S_{t}$, where

$$
\begin{aligned}
& d S_{t}=F_{t} d t \\
& d F_{t}=-\psi F_{t} d t+\sigma_{F} d B_{t}^{F}, \quad \psi>0
\end{aligned}
$$

- MMs inventories evolve according to

$$
d X_{t}^{n}=q_{t}^{n} d t
$$

where q_{t}^{n} will be determined endogenously

- MMs cash evolves according to

$$
d C_{t}^{n}=-q_{t}^{n} p_{t} d t
$$

MM Objectives

MM Objectives

- MMs valuation of the stock is exogenously given as D_{t} where

$$
d D_{t}=\mu d t+\sigma_{D} d B_{t}^{D}
$$

and $\left\{B_{t}^{D}\right\}$ is independent of $\left\{B_{t}^{F}\right\}$

MM Objectives

- MMs valuation of the stock is exogenously given as D_{t} where

$$
d D_{t}=\mu d t+\sigma_{D} d B_{t}^{D}
$$

and $\left\{B_{t}^{D}\right\}$ is independent of $\left\{B_{t}^{F}\right\}$

- MMs marked-to-market wealth is

$$
W_{t}^{n}=C_{t}^{n}+X_{t}^{n} D_{t}
$$

MM Objectives

- MMs valuation of the stock is exogenously given as D_{t} where

$$
d D_{t}=\mu d t+\sigma_{D} d B_{t}^{D}
$$

and $\left\{B_{t}^{D}\right\}$ is independent of $\left\{B_{t}^{F}\right\}$

- MMs marked-to-market wealth is

$$
W_{t}^{n}=C_{t}^{n}+X_{t}^{n} D_{t}
$$

- MMs want to maximize

MM Objectives

- MMs valuation of the stock is exogenously given as D_{t} where

$$
d D_{t}=\mu d t+\sigma_{D} d B_{t}^{D}
$$

and $\left\{B_{t}^{D}\right\}$ is independent of $\left\{B_{t}^{F}\right\}$

- MMs marked-to-market wealth is

$$
W_{t}^{n}=C_{t}^{n}+X_{t}^{n} D_{t}
$$

- MMs want to maximize

$$
\mathbb{E}\left[\int_{0}^{\infty} e^{-\rho t}\left(d W_{t}^{n}-\frac{\gamma}{2} d\left\langle W^{n}\right\rangle_{t}\right)\right]
$$

MM Objectives

- MMs valuation of the stock is exogenously given as D_{t} where

$$
d D_{t}=\mu d t+\sigma_{D} d B_{t}^{D}
$$

and $\left\{B_{t}^{D}\right\}$ is independent of $\left\{B_{t}^{F}\right\}$

- MMs marked-to-market wealth is

$$
W_{t}^{n}=C_{t}^{n}+X_{t}^{n} D_{t}
$$

- MMs want to maximize

$$
\begin{aligned}
& \mathbb{E}\left[\int_{0}^{\infty} e^{-\rho t}\left(d W_{t}^{n}-\frac{\gamma}{2} d\left\langle W^{n}\right\rangle_{t}\right)\right]= \\
& \mathbb{E}\left[\int_{0}^{\infty} e^{-\rho t}\left(-q_{t}^{n}\left(p_{t}-D_{t}\right)+\mu X_{t}^{n}-\frac{\gamma \sigma_{D}^{2}}{2}\left(X_{t}^{n}\right)^{2}\right) d t\right]
\end{aligned}
$$

The Trading Mechanism

The Trading Mechanism

- At time t each MM submits a demand schedule of the form

$$
\alpha_{t}^{n}-\beta_{t}^{n} q_{t}^{n}=p_{t}
$$

The Trading Mechanism

- At time t each MM submits a demand schedule of the form

$$
\alpha_{t}^{n}-\beta_{t}^{n} q_{t}^{n}=p_{t}
$$

- p_{t} and q_{t}^{n} are then given implicitly by the $N+1$ equations

$$
\begin{aligned}
\alpha_{t}^{n}-\beta_{t}^{n} q_{t}^{n} & =p_{t} \\
q_{t}^{1}+\cdots+q_{t}^{N} & =F_{t}
\end{aligned}
$$

The Trading Mechanism

- At time t each MM submits a demand schedule of the form

$$
\alpha_{t}^{n}-\beta_{t}^{n} q_{t}^{n}=p_{t}
$$

- p_{t} and q_{t}^{n} are then given implicitly by the $N+1$ equations

$$
\begin{aligned}
\alpha_{t}^{n}-\beta_{t}^{n} q_{t}^{n} & =p_{t} \\
q_{t}^{1}+\cdots+q_{t}^{N} & =F_{t}
\end{aligned}
$$

- Price and trades are set in Nash equilibrium

Equilibrium Concept

Equilibrium Concept

- A profile $\alpha_{t}^{1}, \beta_{t}^{1}, \cdots, \alpha_{t}^{N}, \beta_{t}^{N}$ is admissible if

Equilibrium Concept

- A profile $\alpha_{t}^{1}, \beta_{t}^{1}, \cdots, \alpha_{t}^{N}, \beta_{t}^{N}$ is admissible if
(1) $\beta_{t}^{n}>0$ a.s.

Equilibrium Concept

- A profile $\alpha_{t}^{1}, \beta_{t}^{1}, \cdots, \alpha_{t}^{N}, \beta_{t}^{N}$ is admissible if
(1) $\beta_{t}^{n}>0$ a.s.
(2) $\mathbb{E}\left[e^{-\rho t}\left(X_{t}^{n}\right)^{2}\right] \rightarrow 0$ as $t \rightarrow \infty$

Equilibrium Concept

- A profile $\alpha_{t}^{1}, \beta_{t}^{1}, \cdots, \alpha_{t}^{N}, \beta_{t}^{N}$ is admissible if
(1) $\beta_{t}^{n}>0$ a.s.
(2) $\mathbb{E}\left[e^{-\rho t}\left(X_{t}^{n}\right)^{2}\right] \rightarrow 0$ as $t \rightarrow \infty$
(3) $\alpha_{t}^{n}, \beta_{t}^{n} \in \sigma\left(\left\{D_{s}\right\}_{0 \leq s \leq t},\left\{p_{s}\right\}_{0 \leq s<t},\left\{X_{s}^{n}\right\}_{0 \leq s \leq t},\left\{q_{s}^{n}\right\}_{0 \leq s<t}, S_{0}\right)$

Equilibrium Concept

- A profile $\alpha_{t}^{1}, \beta_{t}^{1}, \cdots, \alpha_{t}^{N}, \beta_{t}^{N}$ is admissible if
(1) $\beta_{t}^{n}>0$ a.s.
(2) $\mathbb{E}\left[e^{-\rho t}\left(X_{t}^{n}\right)^{2}\right] \rightarrow 0$ as $t \rightarrow \infty$
(3) $\alpha_{t}^{n}, \beta_{t}^{n} \in \sigma\left(\left\{D_{s}\right\}_{0 \leq s \leq t},\left\{p_{s}\right\}_{0 \leq s<t},\left\{X_{s}^{n}\right\}_{0 \leq s \leq t},\left\{q_{s}^{n}\right\}_{0 \leq s<t}, S_{0}\right)$
- A profile is linear and symmetric if $\exists a<0, e>0$, and $b, c, \xi \in \mathbb{R}$ s.t.

$$
\begin{aligned}
& \alpha_{t}^{n}=a X_{t}^{n}+b D_{t}+c S_{t}+\xi \\
& \beta_{t}^{n}=e
\end{aligned}
$$

Equilibrium Concept

- A profile $\alpha_{t}^{1}, \beta_{t}^{1}, \cdots, \alpha_{t}^{N}, \beta_{t}^{N}$ is admissible if
(1) $\beta_{t}^{n}>0$ a.s.
(2) $\mathbb{E}\left[e^{-\rho t}\left(X_{t}^{n}\right)^{2}\right] \rightarrow 0$ as $t \rightarrow \infty$
(3) $\alpha_{t}^{n}, \beta_{t}^{n} \in \sigma\left(\left\{D_{s}\right\}_{0 \leq s \leq t},\left\{p_{s}\right\}_{0 \leq s<t},\left\{X_{s}^{n}\right\}_{0 \leq s \leq t},\left\{q_{s}^{n}\right\}_{0 \leq s<t}, S_{0}\right)$
- A profile is linear and symmetric if $\exists a<0, e>0$, and $b, c, \xi \in \mathbb{R}$ s.t.

$$
\begin{aligned}
& \alpha_{t}^{n}=a X_{t}^{n}+b D_{t}+c S_{t}+\xi \\
& \beta_{t}^{n}=e
\end{aligned}
$$

- Will focus on linear symmetric Nash equilibrium

Table of Contents

(1) Motivation \& Related Work

(2) The Model
(3) Equilibrium Characterization
(4) Equilibrium Analysis
(5) Summary

Explicit Equilibrium

Theorem

Explicit Equilibrium

Theorem
 If $N \geq 3$ then there is a unique linear symmetric Nash equilibrium.

Explicit Equilibrium

Theorem

If $N \geq 3$ then there is a unique linear symmetric Nash equilibrium. In equilibrium the price is

$$
p_{t}=D_{t}+\frac{\mu}{\rho}-\frac{1}{\rho} \frac{\gamma}{N} \sigma_{D}^{2} S_{t}-\frac{\gamma}{N} \frac{N-1}{N-2} \frac{\sigma_{D}^{2}}{\rho+\psi}\left(\frac{1}{\delta}+\frac{1}{\rho}\right) F_{t}
$$

Explicit Equilibrium

Theorem

If $N \geq 3$ then there is a unique linear symmetric Nash equilibrium. In equilibrium the price is

$$
p_{t}=D_{t}+\frac{\mu}{\rho}-\frac{1}{\rho} \frac{\gamma}{N} \sigma_{D}^{2} S_{t}-\frac{\gamma}{N} \frac{N-1}{N-2} \frac{\sigma_{D}^{2}}{\rho+\psi}\left(\frac{1}{\delta}+\frac{1}{\rho}\right) F_{t}
$$

and trading rates are

$$
q_{t}^{n}=-\kappa\left(X_{t}^{n}-\frac{S_{t}}{N}\right)+\frac{1}{N} F_{t}
$$

Explicit Equilibrium

Theorem

If $N \geq 3$ then there is a unique linear symmetric Nash equilibrium. In equilibrium the price is

$$
p_{t}=D_{t}+\frac{\mu}{\rho}-\frac{1}{\rho} \frac{\gamma}{N} \sigma_{D}^{2} S_{t}-\frac{\gamma}{N} \frac{N-1}{N-2} \frac{\sigma_{D}^{2}}{\rho+\psi}\left(\frac{1}{\delta}+\frac{1}{\rho}\right) F_{t}
$$

and trading rates are

$$
q_{t}^{n}=-\kappa\left(X_{t}^{n}-\frac{S_{t}}{N}\right)+\frac{1}{N} F_{t}
$$

where

$$
\begin{gathered}
\kappa=\rho(N-2) \frac{\rho+\psi}{\rho+\delta} \\
\delta=\sqrt{\rho^{2}+2 \rho(\rho+\psi)(N-2)}
\end{gathered}
$$

Sketch of Proof

Sketch of Proof

- On equilibrium

$$
\begin{aligned}
& \hat{p}_{t}=\frac{a}{N} S_{t}+b D_{t}+c S_{t}+\xi-\frac{e}{N} F_{t} \\
& \hat{q}_{t}^{n}=\frac{a}{e}\left(\hat{X}_{t}^{n}-\frac{S_{t}}{N}\right)+\frac{1}{N} F_{t}
\end{aligned}
$$

Sketch of Proof

- On equilibrium

$$
\begin{aligned}
& \hat{p}_{t}=\frac{a}{N} S_{t}+b D_{t}+c S_{t}+\xi-\frac{e}{N} F_{t} \\
& \hat{q}_{t}^{n}=\frac{a}{e}\left(\hat{X}_{t}^{n}-\frac{S_{t}}{N}\right)+\frac{1}{N} F_{t}
\end{aligned}
$$

- Off equilibrium

$$
\begin{aligned}
& p_{t}=\frac{a}{N-1}\left(S_{t}-X_{t}\right)+b D_{t}+c S_{t}+\xi-\frac{e}{N-1}\left(F_{t}-q_{t}\right) \\
& p_{t}=\alpha_{t}-\beta_{t} q_{t}
\end{aligned}
$$

Sketch of Proof

- Optimize directly over $\left\{q_{t}\right\}$

Sketch of Proof

- Optimize directly over $\left\{q_{t}\right\}$
- Almgren-Chriss type problem

Sketch of Proof

- Optimize directly over $\left\{q_{t}\right\}$
- Almgren-Chriss type problem

$$
p_{t}=\frac{a}{N-1} S_{t}+b D_{t}+c S_{t}+\xi-\frac{e}{N-1} F_{t}-\frac{a}{N-1} X_{t}+\frac{e}{N-1} q_{t}
$$

Sketch of Proof

- Optimize directly over $\left\{q_{t}\right\}$
- Almgren-Chriss type problem

$$
\begin{aligned}
p_{t} & =\frac{a}{N-1} S_{t}+b D_{t}+c S_{t}+\xi-\frac{e}{N-1} F_{t}-\frac{a}{N-1} X_{t}+\frac{e}{N-1} q_{t} \\
& =M_{t}+\Lambda X_{t}+\lambda q_{t}
\end{aligned}
$$

Sketch of Proof

- Optimize directly over $\left\{q_{t}\right\}$
- Almgren-Chriss type problem

$$
\begin{aligned}
p_{t} & =\frac{a}{N-1} S_{t}+b D_{t}+c S_{t}+\xi-\frac{e}{N-1} F_{t}-\frac{a}{N-1} X_{t}+\frac{e}{N-1} q_{t} \\
& =M_{t}+\Lambda X_{t}+\lambda q_{t}
\end{aligned}
$$

- Dynamic Programming, HJB, Feedback Controller

Sketch of Proof

- Optimize directly over $\left\{q_{t}\right\}$
- Almgren-Chriss type problem

$$
\begin{aligned}
p_{t} & =\frac{a}{N-1} S_{t}+b D_{t}+c S_{t}+\xi-\frac{e}{N-1} F_{t}-\frac{a}{N-1} X_{t}+\frac{e}{N-1} q_{t} \\
& =M_{t}+\Lambda X_{t}+\lambda q_{t}
\end{aligned}
$$

- Dynamic Programming, HJB, Feedback Controller

$$
\frac{2 e}{N-1} \hat{q}=V_{x}-\left[\left(\frac{a}{N-1}+c\right) s-\frac{a}{N-1} x+(b-1) d+\xi-\frac{e}{N-1} f\right]
$$

Table of Contents

(1) Motivation \& Related Work

(2) The Model
(3) Equilibrium Characterization

4 Equilibrium Analysis
(5) Summary

Interpreting the Price

Interpreting the Price

$$
p_{t}=D_{t}+\frac{\mu}{\rho}-\frac{1}{\rho} \frac{\gamma}{N} \sigma_{D}^{2} S_{t}-\frac{\gamma}{N} \frac{N-1}{N-2} \frac{\sigma_{D}^{2}}{\rho+\psi}\left(\frac{1}{\delta}+\frac{1}{\rho}\right) F_{t}
$$

Interpreting the Price

$$
p_{t}=D_{t}+\frac{\mu}{\rho}-\frac{1}{\rho} \frac{\gamma}{N} \sigma_{D}^{2} S_{t}-\frac{\gamma}{N} \frac{N-1}{N-2} \frac{\sigma_{D}^{2}}{\rho+\psi}\left(\frac{1}{\delta}+\frac{1}{\rho}\right) F_{t}
$$

- First term is MMs current asset valuation

Interpreting the Price

$$
p_{t}=D_{t}+\frac{\mu}{\rho}-\frac{1}{\rho} \frac{\gamma}{N} \sigma_{D}^{2} S_{t}-\frac{\gamma}{N} \frac{N-1}{N-2} \frac{\sigma_{D}^{2}}{\rho+\psi}\left(\frac{1}{\delta}+\frac{1}{\rho}\right) F_{t}
$$

- First term is MMs current asset valuation
- Second term is a premium for expected valuation growth

Interpreting the Price

$$
p_{t}=D_{t}+\frac{\mu}{\rho}-\frac{1}{\rho} \frac{\gamma}{N} \sigma_{D}^{2} S_{t}-\frac{\gamma}{N} \frac{N-1}{N-2} \frac{\sigma_{D}^{2}}{\rho+\psi}\left(\frac{1}{\delta}+\frac{1}{\rho}\right) F_{t}
$$

- First term is MMs current asset valuation
- Second term is a premium for expected valuation growth
- Third term is a discount to compensate MMs for bearing risk

Interpreting the Price

$$
p_{t}=D_{t}+\frac{\mu}{\rho}-\frac{1}{\rho} \frac{\gamma}{N} \sigma_{D}^{2} S_{t}-\frac{\gamma}{N} \frac{N-1}{N-2} \frac{\sigma_{D}^{2}}{\rho+\psi}\left(\frac{1}{\delta}+\frac{1}{\rho}\right) F_{t}
$$

- First term is MMs current asset valuation
- Second term is a premium for expected valuation growth
- Third term is a discount to compensate MMs for bearing risk
- Fourth term captures liquidity

Interpreting the Price

$$
p_{t}=D_{t}+\frac{\mu}{\rho}-\frac{1}{\rho} \frac{\gamma}{N} \sigma_{D}^{2} S_{t}-\frac{\gamma}{N} \frac{N-1}{N-2} \frac{\sigma_{D}^{2}}{\rho+\psi}\left(\frac{1}{\delta}+\frac{1}{\rho}\right) F_{t}
$$

- First term is MMs current asset valuation
- Second term is a premium for expected valuation growth
- Third term is a discount to compensate MMs for bearing risk
- Fourth term captures liquidity

Definition

Price Impact $:=\frac{\gamma}{N} \frac{N-1}{N-2} \frac{\sigma_{D}^{2}}{\rho+\psi}\left(\frac{1}{\delta}+\frac{1}{\rho}\right)$
Liquidity $:=\frac{1}{\text { Price Impact }}$

Comparative Statics for Liquidity

Proposition

Comparative Statics for Liquidity

Proposition

(1) $\frac{\partial}{\partial \gamma}$ Liquidity <0.

Liquidity is decreasing in market makers' risk aversion.

Comparative Statics for Liquidity

Proposition

(1) $\frac{\partial}{\partial \gamma}$ Liquidity <0.

Liquidity is decreasing in market makers' risk aversion.
(2) $\frac{\partial}{\partial \sigma_{D}}$ Liquidity <0.

Liquidity is decreasing in fundamental volatility.

Comparative Statics for Liquidity

Proposition

(1) $\frac{\partial}{\partial \gamma}$ Liquidity <0.

Liquidity is decreasing in market makers' risk aversion.
(2) $\frac{\partial}{\partial \sigma_{D}}$ Liquidity <0.

Liquidity is decreasing in fundamental volatility.
(3) If $\frac{\gamma}{N}$ is held fixed then $\frac{\partial}{\partial N}$ Liquidity >0.

Liquidity is increasing in market maker competition.

Comparative Statics for Liquidity

Proposition

(1) $\frac{\partial}{\partial \gamma}$ Liquidity <0.

Liquidity is decreasing in market makers' risk aversion.
(2) $\frac{\partial}{\partial \sigma_{D}}$ Liquidity <0.

Liquidity is decreasing in fundamental volatility.
(3) If $\frac{\gamma}{N}$ is held fixed then $\frac{\partial}{\partial N}$ Liquidity >0.

Liquidity is increasing in market maker competition.
(9) $\frac{\partial}{\partial \psi}$ Liquidity >0.

Liquidity is decreasing in order flow risk.

Limiting Cases

Limiting Cases

- Price Impact $\rightarrow 0$ as $\psi \rightarrow \infty$

Limiting Cases

- Price Impact $\rightarrow 0$ as $\psi \rightarrow \infty$
- Price Impact $\rightarrow \frac{\gamma_{0}}{\rho} \frac{\sigma_{D}^{2}}{\rho+\psi}$ as $N \rightarrow \infty$ with $\frac{\gamma}{N}=\gamma_{0}$ fixed

Limiting Cases

- Price Impact $\rightarrow 0$ as $\psi \rightarrow \infty$
- Price Impact $\rightarrow \frac{\gamma_{0}}{\rho} \frac{\sigma_{D}^{2}}{\rho+\psi}$ as $N \rightarrow \infty$ with $\frac{\gamma}{N}=\gamma_{0}$ fixed
- In both cases the price is asymptotic to

$$
D_{t}+\frac{\mu}{\rho}-\mathbb{E}_{t}\left[\int_{t}^{\infty} e^{-\rho(T-t)} \gamma_{0} \sigma_{D}^{2} S_{T} d T\right]
$$

Interpreting the Trading Rates

Interpreting the Trading Rates

$$
q_{t}^{n}=-\kappa\left(X_{t}^{n}-\frac{S_{t}}{N}\right)+\frac{1}{N} F_{t}
$$

Interpreting the Trading Rates

$$
q_{t}^{n}=-\kappa\left(X_{t}^{n}-\frac{S_{t}}{N}\right)+\frac{1}{N} F_{t}
$$

- MMs aggregate time t inventory is S_{t}

Interpreting the Trading Rates

$$
q_{t}^{n}=-\kappa\left(X_{t}^{n}-\frac{S_{t}}{N}\right)+\frac{1}{N} F_{t}
$$

- MMs aggregate time t inventory is S_{t}
- The efficient allocation is for each MM to hold $\frac{S_{t}}{N}$

Interpreting the Trading Rates

$$
q_{t}^{n}=-\kappa\left(X_{t}^{n}-\frac{S_{t}}{N}\right)+\frac{1}{N} F_{t}
$$

- MMs aggregate time t inventory is S_{t}
- The efficient allocation is for each MM to hold $\frac{S_{t}}{N}$
- Second term says that new supply shocks are absorbed efficiently

Interpreting the Trading Rates

$$
q_{t}^{n}=-\kappa\left(X_{t}^{n}-\frac{S_{t}}{N}\right)+\frac{1}{N} F_{t}
$$

- MMs aggregate time t inventory is S_{t}
- The efficient allocation is for each MM to hold $\frac{S_{t}}{N}$
- Second term says that new supply shocks are absorbed efficiently
- First term says that existing misallocations move towards efficiency

Interpreting the Trading Rates

$$
q_{t}^{n}=-\kappa\left(X_{t}^{n}-\frac{S_{t}}{N}\right)+\frac{1}{N} F_{t}
$$

- MMs aggregate time t inventory is S_{t}
- The efficient allocation is for each MM to hold $\frac{S_{t}}{N}$
- Second term says that new supply shocks are absorbed efficiently
- First term says that existing misallocations move towards efficiency

$$
X_{t}^{n}=\frac{S_{t}}{N}+e^{-\kappa t}\left(X_{0}^{n}-\frac{S_{0}}{N}\right)
$$

Interpreting the Trading Rates

$$
q_{t}^{n}=-\kappa\left(X_{t}^{n}-\frac{S_{t}}{N}\right)+\frac{1}{N} F_{t}
$$

- MMs aggregate time t inventory is S_{t}
- The efficient allocation is for each MM to hold $\frac{S_{t}}{N}$
- Second term says that new supply shocks are absorbed efficiently
- First term says that existing misallocations move towards efficiency

$$
X_{t}^{n}=\frac{S_{t}}{N}+e^{-\kappa t}\left(X_{0}^{n}-\frac{S_{0}}{N}\right)
$$

Definition

Rate of Convergence to Efficiency $:=\kappa:=\rho(N-2) \frac{\rho+\psi}{\rho+\delta}$

Table of Contents

(1) Motivation \& Related Work

(2) The Model
(3) Equilibrium Characterization

4 Equilibrium Analysis
(5) Summary

Summary

Summary

- Stochastic differential game to compete for order flow

Summary

- Stochastic differential game to compete for order flow
- Endogenous liquidity level driven by

Summary

- Stochastic differential game to compete for order flow
- Endogenous liquidity level driven by
- Imperfect competition

Summary

- Stochastic differential game to compete for order flow
- Endogenous liquidity level driven by
- Imperfect competition
- Order flow risk

Summary

- Stochastic differential game to compete for order flow
- Endogenous liquidity level driven by
- Imperfect competition
- Order flow risk
- Risk discount today is the present value of future risk discounts

Summary

- Stochastic differential game to compete for order flow
- Endogenous liquidity level driven by
- Imperfect competition
- Order flow risk
- Risk discount today is the present value of future risk discounts
- Risk reallocation among liquidity providers can be slow

