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Introduction
Asset Pricing with Transaction Costs

I How are trading costs reflected in asset prices?
I Liquidity premia in expected returns?
I Effect of a transaction tax on market volatility?

I Needs to be studied with equilibrium models.
I Prices determined as output by matching supply and demand,

rather than modeled as input.
I Equilibrium analyses are already hard without trading costs.

I Notoriously intractable feedback loop.
I Trading depends on prices. Prices have to change if market

does not clear. Fixed-point problem.
I Intractability is compounded with frictions.

I Individual optimization becomes much more involved.
I Representative agent not applicable.



Introduction
Literature

I Numerical solution of discrete-time tree models:
I Heaton/Lucas ‘96. Buss/Dumas ‘15; Buss/Vilkov/Uppal ‘15.

I Additional restrictive modeling assumptions:
I No risky asset (Vayanos/Vila ‘99, Weston ‘16).
I Constant asset prices (Lo/Mamaysky/Wang ‘04).
I Full refund of costs that is not internalized (Davila ‘15).
I Only one rational optimizer (Garleanu/Pedersen ‘16).

I Recent working paper of Sannikov/Skrzypacz:
I Private endowments revealed through linear demand schedules.
I Price impact endogenous like in microstructure literature.
I Linear-quadratic control arguments suggest stationary linear

equilibria should solve system of algebraic equations.
I Existence and uniqueness?



Introduction
Asset Pricing with Transaction Costs

This talk:
I Equilibrium returns with transaction costs.

I Endogenous expected returns but exogenous volatilities.
I Global existence, uniqueness, and characterization of

equilibrium by matrix Riccati equations.
I Explicitly solvable examples.
I Joint work with Bouchard/Fukasawa/Herdegen ‘18.

I Equilibrium asset prices with transaction costs.
I Endogenous returns and volatilities.
I Local existence and uniqueness for similar risk aversions.
I Explicit asymptotic formulas.
I Joint work in progress with Herdegen/Possamai.



Equilibrium Returns
Frictionless Benchmark

I Exogenous savings account. Price normalized to one.
I Unit net supply of risky asset with Itô dynamics:

dSt = µtdt + σdWt

I Risky returns (µt)t∈[0,T ] to be determined in equilibrium.
I Exogenous volatility σ > 0 as in Zitković ‘12, Choi/Larsen‘15,

Kardaras/Xing/Zitković ‘15, Garleanu/Pedersen ‘16.
I Agents n = 1, 2 with partially spanned endowments:

dY n
t = νn

t dt + βn
t dWt + β⊥,nt dW⊥

t

I Frictionless wealth dynamics of a trading strategy (ϕt)t∈[0,T ]:

ϕtdSt + dY n
t



Equilibrium Returns
Frictionless Benchmark ct’d

I Equilibria are generally intractable even for CARA preferences.
I Abstract existence results if market is complete (classical), or

almost complete (Kardaras/Xing/Zitković ‘15).
I Some partial very recent existence results for the general

incomplete case (Xing/Zitković ‘17).
I Only few examples that can be solved explicitly (Larsen et al).

I Tractability issues exacerbated by trading frictions.
I Need simpler frictionless starting point.
I Use local mean-variance preferences over changes in wealth:

E
[∫ T

0 (ϕtdSt + dY n
t )− γn

2
∫ T

0 〈ϕtdSt + dY n
t 〉
]
→ max!



Equilibrium Returns
Frictionless Benchmark ct’d

I Optimizers readily determined by pointwise maximization of

E
[∫ T

0 ϕtµt + νn
t −

γn

2 (ϕtσ + βn
t )2dt

]
I Optimum is Merton portfolio plus mean-variance hedge:

ϕn
t = µt

γnσ2 − βn
t
σ

I Myopic. Available in closed form for any risky return.
I Leads to CAPM-equilibrium by summing across agents:

µt = γ̄σ2 + γ̄σ(β1
t + β2

t ), where γ̄ = γ1γ2

γ1+γ2



Equilibrium Returns
Adding Transaction Costs

I Optimization criterion with quadratic trading costs:

J(ϕ̇) = E
[∫ T

0 ϕtµt − γn

2 (ϕtσ + βn
t )2 − λ

2 ϕ̇
2
t dt
]
→ max!

I Linear price impact proportional to trade size and speed.
I Standard model in optimal execution (Almgren/Chriss ‘01).
I Recently used in portfolio choice (Garleanu/Pedersen ‘13, ‘16;

Almgren/Li ‘16; Moreau/M-K/Soner ‘17).
I Problem is no longer myopic with trading costs.

Current position becomes extra state variable.
I But still tractable for single-investor problems:

I Dynamic programming (Garleanu/Pedersen ‘16).
I Calculus-of-variations (Bank/Soner/Voss ‘17).



Equilibrium Returns
Individual Optimality with Transaction Costs

I First step towards equilbrium:
I Fix return (µt)t∈[0,T ], compute agents’ individual optimizers.

I Necessary and sufficient for optimality: directional derivative
limρ→0

1
ρ(J(ϕ̇+ ρψ̇)− J(ϕ̇)) vanishes for any perturbation ψ:

0 = Et

[∫ T
0

(
µt
∫ t

0 ψ̇udu − γnσ(ϕtσ + βn
t )
∫ t

0 ψ̇udu − λϕ̇t ψ̇t

)
dt
]

I As in Bank/Soner/Voss, rewrite using Fubini’s theorem:

0 = Et
[∫ T

0

(∫ T
t

(
µu − γnσ(ϕuσ + βn

u)
)
du − λϕ̇>t

)
ψ̇tdt

]
I Has to hold for any perturbation ψ̇t .



Equilibrium Returns
Individual Optimality and FBSDEs

I Whence, tower property of conditional expectation yields:

ϕ̇t = 1
λEt

[∫ T
t µu − γnσ2

(
ϕu + βn

u
σ

)
du
]

= Mt − 1
λ

∫ t

0

(
µu − γnσ2

(
ϕu + βn

u
σ

) )
du

for a martingale Mt .
I Thus, individually optimal strategy solves linear FBSDE:

dϕn
t = ϕ̇n

t dt, ϕn
0 = initial condition

dϕ̇n
t = dMt + γnσ2

λ

(
ϕn

t − ξn
t

)
dt, ϕ̇n

T = 0

where ξn
t = µt

γnσ2 − βn
t
σ is the frictionless optimum.



Equilibrium Returns
Linear FBSDEs and Riccati ODEs

I Bank/Soner/Voss ‘17: one-dimensional case can be reduced
to Riccati equations using the ansatz

ϕ̇t = F (t)(ξ̂t − ϕt), ξ̂t = K1(t)Et
[∫ T

t K2(s)ξsds
]

I Higher dimensions lead to coupled but still linear FBSDEs.
I Many risky assets here. Many agents in equilibrium.

I Matrix version of ansatz still allows to reduce to matrix
Riccati ODEs.

I Can be solved in terms of “primary matrix functions”.
I Aggregate individual optimizers into an equilibrium?



Equilibrium Returns
Market Clearing

I For equilibrium, need returns (µt)t∈[0,T ] such that

0 = dϕ̇1
t + dϕ̇2

t

= σ2

λ

(
(γ1ϕ1

t + γ2ϕ2
t ) + (γ1β1

t + γ2β2
t )− 2µt

σ2

)
dt + dMt

I Since ϕ2
t = 1− ϕ1

t in equilibrium:

µt = σ2
(
γ1β1

t +γ2β2
t

2 + γ2

2 + γ1−γ2

2 ϕ1
t

)
I For agents with the same risk aversion γ1 = γ2 = γ:

I Same equilibrium return as without trading costs.
I Agents are not indifferent, but market still clears.



Equilibrium
Linear FBSDEs

I With heterogenous risk aversions γ1 6= γ2:
I Plug back formula for µt into clearing condition for agent 1.
I Again leads to a linear FBSDE:

dϕ1
t = ϕ̇1

t dt, ϕ1
0 = initial position

dϕ̇1
t = σ2

λ

(
γ1β1

t−γ
2β2

t
2 − γ2

2 + γ1+γ2

2 ϕ1
t

)
dt + dM1

t , ϕ̇1
T = 0

I Solution as for individual optimality (modulo matrix algebra).
I Direct construction also yields uniqueness

I In summary:
I Existence of a unique equilibrium return.
I Characterized in terms of matrix Riccati equations. Explicit

formulas if conditional expectations of β1
t , β2

t are known.



Equilibrium Returns
Example

I Simplest case (Lo/Mamaysky/Wang ‘04):
I No aggregate endowments. Individual exposures follow

β1
t = −β2

t = αt + Nt ,

for a constant α and a Brownian motion Nt .
I To obtain simpler stationary solutions: T =∞.
I Well posed with discount rate δ > 0: adds one term to FBSDE,

but allows to replace terminal with transversality condition.
I Trading rates become constant, discounting becomes

exponential.
I (Discounted) conditional expectations of endowment

exposures can be readily computed in closed form.
I Leads to explicit dynamics of the equilibrium return.



Equilibrium Returns
Example ct’d

I Ornstein-Uhlenbeck equilibrium dynamics like in reduced-form
models (Kim/Omberg ‘96; Bouchaud et al. ‘12):

dµt =
(√

γ1+γ2
2

σ2

2λ + δ2

4 −
δ
2

)(
2γ1−γ2
γ1+γ2

δλα− µt
)

dt

+ (γ1−γ2)σ2

2 dNt

I Average liquidity premium vanishes for equal risk aversions.
Generally proportional to relative difference times impatience.

I Positive premium if more risk averse agent is a net seller.
I Has stronger motive to trade, therefore provides extra

compensation.
I Momentum even for martingale endowments.

Induced by sluggishness of frictional portfolios.



Equilibrium Asset Prices
Frictionless Benchmark

I Extra condition to pin down equilibrium volatility?
I Simplest model: exogenous terminal condition ST = S.

I Fundamental value or terminal dividend.
I Individual optimization works as before (ϕn

t = µt
γnσ2

t
− βn

t
σt
).

I Equilibrium return still determined by summing across agents:

µt = γ̄σ2
t + γ̄σt(β1

t + β2
t )

I But terminal condition now imposes a quadratic BSDE:

dSt =
[
γ̄σ2

t + γ̄σt(β1
t + β2

t )
]

dt + σtdWt , ST = S

I Volatility σt (and initial price S0) is part of the solution.



Equilibrium Asset Prices
Extension with Transaction Costs?

I Quadratic BSDE for frictionless volatility has unique solution
by standard results, e.g., for bounded β1 + β2,S.

I Purely quadratic after switching to measure Pβ with density
process E(−γ̄

∫ ·
0(β1

t + β2
t )dWt). Explicit solution:

St = − 1
2γ̄Eβ

t
[
e−2γ̄S

]
I Explicit formulas for terminal conditions produced by affine

processes: e.g., if S = bT + aWT , then

σt = a, µt = γ̄a2, S0 = (b − γ̄a2)T

I Still tractable with (quadratic) transaction costs?



Equilibrium Asset Prices
Extension with Transaction Costs ct’d

I Calculus-of-variations argument of Bank/Soner/Voss still
leads to FBSDE linear in optimal position and trading rate.

I But squared volatility is now no longer exogenous.
I Terminal condition leads to another coupled BSDE:

dϕ1
t = ϕ̇1

t , ϕ
1
0 = initial position,

dϕ̇1
t = (γ1+γ2)σ2

t
2λ

(
γ1β1

t−γ2β2
t

(γ1+γ2)σt
− γ2

γ1+γ2 + ϕ1
t

)
+ dM1

t , ϕ̇
1
T = 0

dSt = σ2
t

(
γ1−γ2

2 ϕ1
t + γ2

2 + γ1β1
t +γ2β2

t
2σt

)
dt + σtdWt , ST = S

I Fully coupled. Bad news.



Equilibrium Asset Prices
Picard Iteration?

Existence? Uniqueness?
I Direct Picard iteration only works if time horizon T is small.

I Similar to large costs. Almost no trading.
I Exponential weighting does not help due to coupling.
I Way out?

I Suitable “smallness” condition?
I Trading rate explodes for small transaction costs.

I Forward-backward system for (ϕ̇1, ϕ1): studied in
Kohlmann/Tang ‘02 for an exogenous bounded volatility σ.

I How to use this here?



Equilibrium Asset Prices
Almost Homogenous Risk Aversions

I Coupling disappears for γ1 = γ2 = γ:

dSt =
(
γ1−γ2

2 ϕ1
tσ

2
t + γ

2 (σ2
t + (β1

t + β2
t )σt)

)
dt + σtdWt

I Equilibrium volatility coincides with frictionless counterpart σ̄.
I For bounded σ̄: trading strategies determined by linear

FBSDE with stochastic coefficients as in Kohlmann/Tang ‘02:

dϕ1
t = ϕ̇1

t , ϕ1
0 = initial position,

dϕ̇1
t = γσ̄2

t
λ

(
β1

t−β2
t

2σ̄t
− 1

2 + ϕ1
t

)
+ dM1

t , ϕ̇1
T = 0

I Solutions in terms of backward stochastic Riccati equation.
I Expansion around this case?



Equilibrium Asset Prices
Almost Homogenous Risk Aversions ct’d

I Idea: Picard iteration only for BSDE for equilibrium price:

dSt = σ2
t

(
γ1−γ2

2 ϕ1
t + γ2

2 + γ1β1
t +γ2β2

t
2σt

)
dt + σtdWt , ST = S

I Construct ϕ1 with the volatility from the previous step.
I Bounded for bounded β1, β2,S.
I BSDE for S of quadratic growth. But data is not small.

I Way out: consider difference Y to frictionless equilibrium:

dYt =
(

(σ̄t + Zt)2 γ1−γ2

2 (ϕ1
t − ϕ̄1

t ) + γ̄Z 2
t + γ̄(2σ̄t + β1

t + β2
t )Zt

)
dt

+ ZtdWt YT = 0,

I Linear drift can be removed by change of measure.



Equilibrium Asset Prices
Picard Iteration

I In summary: study Picard Iteration for

dYt =
(

(σ̄t + Zt)2 γ1−γ2

2 (ϕ1
t − ϕ̄1

t ) + γ̄Z 2
t

)
dt + ZtdW Q

t YT = 0

under Q with density process E(
∫ ·

0 γ̄(2σ̄t + β1
t + β2

t )dWt).
I Unique solution in L∞ ×H2

BMO as in Tevzadze ‘08?
I Extend Kohlmann/Tang ‘02 from bounded to BMO-volatility

by localization.
I Establish stability estimates for BSRDEs (under Q).
I Gives convergence for bounded σ̄, sufficiently small |γ1 − γ2|.

I Existence and uniqueness for sufficiently similar risk aversions.
I Characterization?



Equilibrium Asset Prices
Asymptotic Expansion

I For small |γ1 − γ2| ( small Zt): price correction

dYt =
(

(σ̄t + Zt)2 γ1−γ2

2 (ϕ1
t − ϕ̄1

t ) + γ̄Z 2
t

)
dt + ZtdW Q

t YT = 0

can be approximated in L∞ ×H2
BMO by linear BSDE:

dȲt =σ̄2
t
γ1−γ2

2 (ϕ1,σ̄
t − ϕ̄1

t )dt + Z̄tdW Q
t ȲT = 0

I Difference ϕ1,σ̄
t − ϕ̄1

t between frictionless equilibrium and
tracking strategy for volatility σ̄ has decoupled dynamics.

I Explicit price correction in concrete examples:

Ȳt = γ2 − γ1

2 EQ
t

[∫ T

t
σ̄2

s (ϕ̄1
s − ϕ1,σ̄

s )ds
]



Equilibrium Asset Prices
Volatility Correction

I For Brownian target positions β1 = −β2 = βWt :
I σ̄ is constant.
I ϕ1,σ̄

t − ϕ̄1
t follows Ornstein-Uhlenbeck process.

I Ȳt is multiple of OU process plus smooth drift.
I Volatility correction due to small transaction costs λ is

σ ≈ σ̄
(
1− γ1−γ2√

2(γ1+γ2)
λ1/2β

)
I Interpretation?
I Recall that

β = d〈Y 1,S〉t
d〈S,S〉t



Equilibrium Asset Prices
Volatility Correction ct’d

I Asymptotic volatility correction:

σλt ≈ σ0
(
1− λ1/2 γ1−γ2√

2(γ1+γ2)
d〈Y 1,S〉t
d〈S,S〉t

)
I Suppose γ1 > γ2, β = d〈Y 1,S〉t

d〈S,S〉t > 0.
I Then if risky asset increases, agent 1’s exposure also tends to

increase. Has to sell to hedge.
I Agent 2 has opposite exposure. Has to buy.
I More risk-averse agent 1 wants to trade faster. To clear

market, need to add positive expected return.
I Amplifies price shock. To reach given terminal distribution,

have to reduce volatility.



Outlook
Open Problems

I Results with transaction costs beyond bounded inputs?
I To make Brownian example rigorous, need to stop

appropriately.
I Global existence and uniqueness?
I Small-cost asymptotics as in partial equilibrium models?
I Mean-reverting volatility due to illiquidity?
I Other, e.g., proportional trading costs?
I Price impact rather than “tax”?
I Nash competition rather than competitive equilibrium?
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