

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwin model

Keen model

Extended Model

Conclusions

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Mathematics and Statistics - McMaster University and Fields Institute for Research in Mathematical Sciences

Mathematical Finance Colloquium, University of Southern California, October 06, 2014

James Tobin's contributions to economics

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

Extended Model

- Tobin received the 1981 Nobel Memorial Prize "for his analysis of financial markets and their relations to expenditure decisions, employment, production and prices".
- Well-known contributions included: foundations of modern portfolio theory (with Markowitz), in particular the Separation Theorem (1958), life-cycle model of consumption, Tobit estimator, Tobin's q, Tobin's tax, ...
- Key forgotten contribution: financial intermediation, portfolio balances, flow of funds models and the credit channel.

Asset price

Tobin 1969: A General Equilibrium Approach to Monetary Theory

dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction SEC models

Goodwin

Keen model

Extended Model

- Specification of (i) a menu of assets, (ii) the factors that determine the demands and supplies of the various assets, and (iii) the manner in which asset prices and interest rates clear these interrelated markets.
 - Spending decisions are independent from portfolio decisions.
 - Each asset i has a rate of return r_i and each sector j has a net demand f_{ij} for asset i.
 - Adding up constraint: for each rate of return r_k ,

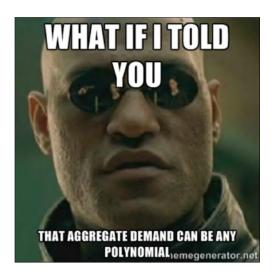
$$\sum_{i=1}^{n} \frac{\partial f_{ij}}{\partial r_k} = 0.$$

- Paper proceeds to analyze several special cases: money-capital, money-treasuries-capital, banks, etc.
- Victim of the Microfoundations Revolution.

SMD theorem: something is rotten in GE land

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli


Introduction

SEC models

Goodwin model

Keen model

Extended Model

Stock-Flow Consistent models

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

Extended Model

- Stock-flow consistent models emerged in the last decade as a common language for many heterodox schools of thought in economics.
- They consider both real and monetary factors simultaneously.
- Specify the balance sheet and transactions between sectors.
- Accommodate a number of behavioural assumptions in a way that is consistent with the underlying accounting structure.
- Reject the RARE individual (representative agent with rational expectations) in favour of SAFE (sectoral average with flexible expectations) modelling.
- See Godley and Lavoie (2007) for the full framework.

Balance Sheets

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

Extended Model

Conclusions

Balance Sheet	Households	Fir	ms	Banks	Central Bank	Government	Sum
		current	capital				
Cash	$+H_h$			$+H_b$	-H		0
Deposits	$+M_h$		$+M_f$	-M			0
Loans			-L	+L			0
Bills	$+B_h$			$+B_b$	$+B_c$	− <i>B</i>	0
Equities	$+p_f E_f + p_b E_b$		$-p_f E_f$	$-p_bE_b$			0
Advances				-A	+A		0
Capital			+pK				pΚ
Inventory			+cV				cV
Sum (net worth)	X_h	0	X_f	X_b	0	− <i>B</i>	Χ

Table: Balance sheet in an example of a general SFC model.

Transactions

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

Extended Model

Conclusions

Transactions	Households		Firms	. Banks	Central Bank	Government	Sum
		current	capital				
Consumption	$-pC_h$	+pC		$-pC_b$			0
Investment		$+pI_k$	$-pI_k$				0
Change in Inventory		$+c\dot{V}$	$-c\dot{V}$				0
Gov spending		+pG				-pG	0
Acct memo [GDP]		[pY]					
Wages	+W	-W					0
Taxes	$-T_h$	$-T_f$				+ <i>T</i>	0
Interest on deposits	$+r_M.M_h$	$+r_M.M_f$		$-r_M.M$			0
Interest on loans		$-r_L.L$		$+r_L.L$			0
Interest on bills	$+r_B.B_h$			$+r_B.B_b$	$+r_B.B_c$	$-r_B.B$	0
Profits	$+\Pi_d + \Pi_b$	-П	$+\Pi_u$	$-\Pi_b$	$-\Pi_c$	$+\Pi_c$	0
Sum	S_h	0	$S_f - pI_k - c\dot{V}$	S_b	0	S_g	0

Table: Transactions in an example of a general SFC model.

Flow of Funds

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

recen mode

Extended Model

Conclusions

Flow of Funds	Households	Firms current capital		Banks	Central Bank	Government	Sum
Cash	$+\dot{H}_h$			$+\dot{H}_b$	−Ĥ		0
Deposits	$+\dot{M}_h$		$+\dot{M}_f$	$-\dot{M}$			0
Loans			-L	+Ĺ			0
Bills	$+\dot{B}_h$			$+\dot{B}_b$	$+\dot{B}_c$	− <i>B</i>	0
Equities	$+p_f \dot{E}_f + p_b \dot{E}_b$		$-p_f \dot{E}_f$	$-p_b\dot{E}_b$			0
Advances				$-\dot{A}$	+À		0
Capital			+pI				ρl
Sum	S_h	0	S_f	S_b	0	Sg	ρl
Change in Net Worth	$(S_h + \dot{p}_f E_f + \dot{p}_b E_b)$	$(S_f - \dot{p}_f E$	$f + \dot{p}K - p\delta K$	$(S_b - \dot{p}_b E_b)$		Sg	р́К + рЌ

Table: Flow of funds in an example of a general SFC model.

Example: household balance sheet US 2013

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

Extended Model

		Sheet of Households and Nonprofit Org amounts outstanding end of period, not seasonally a				
			2010	2011	2012	2013
1	91.152000005	Assets	77136.1	78258.0	84643.4	94042.3
2	PL153010005	Nordinancial seeds	23323.3	23268.8	25007.3	27544.4
3	IT.155035005	Redente	18330.9	380112	19711.8	2289.7
à	PE.158035015	Bloombolds (Z.3)	36347.4	19939.7	17:994.5	24407.5
5	FLINGUISTON	Nontrofit organizations	1983.6	2171.5	2317.2	2947.3
ő	FE.168015205	Equipment (nonprofix) (4)	250.5	304.6	315.1	321.3
ž.	FE.169013755	Intellectual property products (masprofits) (4)	115.0	127.6	122.6	140.0
8	FL155111005	Consumer should groots (4)	4596.7	4726.4	4848.0	5011.0
9	75.134790005	Please's lanea	53806.9	34992.2	59454.1	66497.5
20	PL154000025	Deposits	8059.4	8736.8	9241.5	9572.5
11	FL158091003	Foreign deposits	49.7	46.9	45.1	48.4
12	FE.153020005	Chesisable deposits and currency	423.0	752.0	897.8	1004.7
19	PL153030005	Time and sovines depends	6455.9	6827.7	7191.2	7368.3
14	FL153034005	Money market fond shows	1130.2	1139.2	1107.4	1130.4
5	PL154004005	Credit market instrumente	5834.0	5425.5	5422.2	5446.0
16	FL163099303	Open market paper	21.1	19.4	18.6	15.0
õ.	DE.153061505	Thracery securities	1134.4	715.6	941.8	935
8	PL153361705	Agracy- and GSE-backed scenarios	355.7	304.6	124.2	123.5
ä	FL153062005	Monteipal securities	1871.8	1808.3	1565.8	1625.3
10	PL153043005	Corporate and Foreign bonds	7748.1	7379.0	2068.6	2518.1
ii.	FE.153069833	Other loans and advances (f)	26.2	19.4	20.4	25.6
12	FL153065005	Morteages	100.3	100.8	16.7	10.4
ö	FL163096223	Consumer could (student lossy)	78.4	74.5	65.6	59.1
14	FL153064105	Corporate opation (2)	9995.3	9005.4	10412.0	13369
5	PL153064205	Murail find shares (5)	4996.2	4500.9	5466.7	8890.1
ď.	PL133067005	Separate codi	729.2	778.1	737.8	817.3
ĕ.	PL1530H0005	Life investore reserves	1137.2	1200.6	11863	1242.3
8	PL153030005	Pension entitlements (T)	16751.6	17126.3	19093.8	19563.5
9	PL153090305	Egulty is nercorporate business (V)	6895.6	736.9	9758.4	8790.5
0	PL153090005	Musclaneous usets	808.2	878.8	873.6	897.5
ı	91.154190008	Liabilities	13766.5	13566.0	13626.8	13768.2
12	TE.154104005	Credit market instruments	19214.8	13052.9	13044.2	13146.1
9	PL153165105	Home mortages (9)	9912.7	9697.5	9481.7	9366.3
4	P\$.153166000	Consumer credit	2647.4	2755.9	2923.6	3067
5	FL163162003	Municipal securities (18)	263.2	255.5	241.8	227.0
ò	PE.153168005	Depository institution fourwards.	61.0	17.5	62.6	92.7
0	FL153166005	Other loans and advances	136.1	138.1	139.3	1413
8	FL163165925	Commercial mortgages (10)	194.3	194.3	195.8	200.8
9	FL153167005	Security credit	279.2	236.9	360.7	339.1
10	PL163170003	Trade garables (18)	248.8	250.0	254.8	255.6
41	PL543077073	Deferred and unpaid life insurance premiums	24.7	24.3	24.9	27.5
12	FL152060006	Not worth	60563.7	64692.0	20814.6	80274.1

Example: NIPA US 2012

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

Extended Model

Conclusions

Table A. Summary National Income and Product Accounts, 2012 (Silver of scient)

Account 1. Domestic Income and Product Account

Account 2. Private Enterprise Income Account

tme		Line		
how we question to easily a price of the extra of the ext	2,6942 2,4073 1411 1859 1969 414 726 411 12243 5912 2,095 6024 1574,7 7773 842 1574,7 7773 842 842 1574,7 7773 842 843 843 843 844 845 845 845 845 845 845 845 845 845	20 21 22 23 23	for operating upons, prime renormal (1-4) comes records as a second of the control of the contr	1,903 5,415 1,903 3973 3981

Account 3, Personal Income and Outlay Account

Line			Line		
-27000070	Personal course has 14-46 Personal configuration of the configuration o	1,480.0 11,500.4 11,400.1 100.6 100.6 100.6 100.6 100.7 100.7 100.7 100.7	90 111 115 115 115 115 115 115 115 115 11	Compression of personal registers. Segon and decision. Segon and decis	8,611 8 5,903,9 6,903,9 6,903,1 5,943 5,94
9	PERSONAL TAKES, OUTLAYS, AND SAVING	12.742.0	36	PERSONAL NICONE	10,740.8

Goodwin Model - SFC matrix

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models

Goodwir model

Keen model

Extended Model

Conclusions

Balance Sheet	Households	Fir	ms	Sum
		current	capital	
Capital			+pK	рK
Sum (net worth)	0	0	V_f	рK
Transactions				
Consumption	-рС	+pC		0
Investment		+pI	-pl	0
Acct memo [GDP]		[pY]		
Wages	+W	-W		0
Profits		-П	$+\Pi_u$	0
Sum	0	0	0	0
Flow of Funds				
Capital			+pI	pl
Sum	0	0	Пи	pl
Change in Net Worth	0	pl + pK	$-p\delta K$	р́K + рЌ

Table: SFC table for the Goodwin model.

Goodwin Model - Differential equations

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwii model

Keen model

Extended Model

Conclusions

Define

$$\omega = rac{\mathrm{w}\ell}{
ho Y} = rac{\mathrm{w}}{
ho a}$$
 (wage share)
$$\lambda = rac{\ell}{N} = rac{Y}{aN}$$
 (employment rate)

It then follows that

$$\frac{\dot{\omega}}{\omega} = \frac{\dot{w}}{w} - \frac{\dot{p}}{p} - \frac{\dot{a}}{a} = \Phi(\lambda, i, i^{e}) - i - \alpha$$

$$\frac{\dot{\lambda}}{\lambda} = \frac{1 - \omega}{\nu} - \alpha - \beta - \delta$$

• In the original model, all quantities were real (i.e divided by p), which is equivalent to setting $i = i^e = 0$.

Where does Φ come from?

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwi model

Keen model

Extended Model

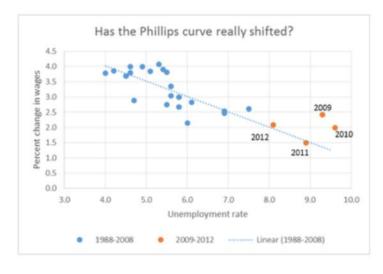
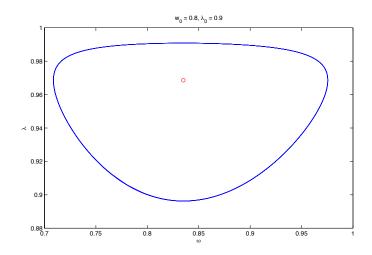


Figure: Krugman - July 15, 2014

Example 1: Goodwin model

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli


Introduction

SFC models

Goodwi model

Keen model

Extended Model

Testing Goodwin on OECD countries

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwin model

Keen model

Extended Model

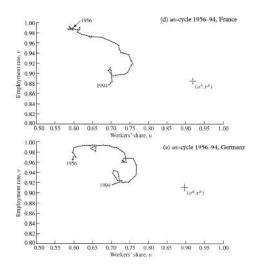


Figure: Harvie (2000)

Correcting Harvie (1970 to 2009)

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwin model

Keen model

Extended Model

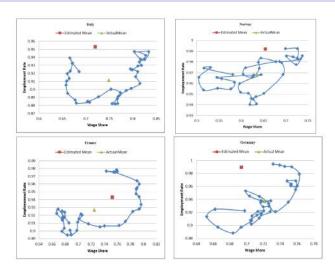


Figure: Grasselli and Maheshwari (2014, in progress)

What about shocks?

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models

Goodwi model

Keen model

Extended Model

Conclusions

 Nguyen Huu and Costa Lima (2014) introduce stochastic productivity of the form

$$da_t := a_t d\alpha_t = a_t [\alpha dt - \sigma(\lambda_t) dW_t]$$

leading to a modified model of the form

$$\frac{\dot{\omega}}{\omega} = \Phi(\lambda) - \alpha + \sigma^2(\lambda_t)dt + \sigma(\lambda_t)dW_t
\frac{\dot{\lambda}}{\lambda} = \frac{1 - \omega}{\nu} - \alpha - \beta - \delta + \sigma^2(\lambda_t)dt + \sigma(\lambda_t)dW_t$$

 They then prove the existence of stochastic orbits generalizing the original Goodwin cycles.

Stochastic orbits of a Goodwin model with productivity shocks

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwi model

Keen model

Extended Model

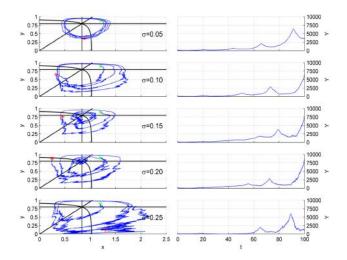


Figure: Figure 3 in Nguyen Huu and Costa Lima (2014)

SFC table for Keen (1995) model

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

Ponzi financing and Stock Prices Great

Moderation

Extended Model

Conclusions

Balance Sheet	Households	Fi	rms	Banks	Sum
		current	capital		
Deposits	+D			-D	0
Loans			-L	+L	0
Capital			+pK		рK
Sum (net worth)	V_h	0	V_f	0	pΚ
Transactions					
Consumption	-pC	+pC			0
Investment		+pI	-pI		0
Acct memo [GDP]		[pY]			
Wages	+W	-W			0
Interest on deposits	+rD			-rD	0
Interest on loans		-rL		+rL	0
Profits		-П	$+\Pi_u$		0
Sum	S_h	0	$S_f - pI$	0	0
Flow of Funds					
Deposits	+Ď			-Ď	0
Loans			-L	+L	0
Capital			+pI		pΙ
Sum	S_h	0	Пи	0	pl
Change in Net Worth	S_h	$(S_f + \dot{p})$	$K - p\delta K$		<i>pK</i> + <i>p</i>

Table: SFC table for the Keen model.

Keen model - Investment function

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwin model

Keen model Ponzi financing

Ponzi financing and Stock Prices Great Moderation

Extended Model

Conclusions

Assume now that new investment is given by

$$\dot{K} = \kappa (1 - \omega - rd)Y - \delta K$$

where $\kappa(\cdot)$ is a nonlinear increasing function of profits $\pi = 1 - \omega - rd$.

 This leads to external financing through debt evolving according to

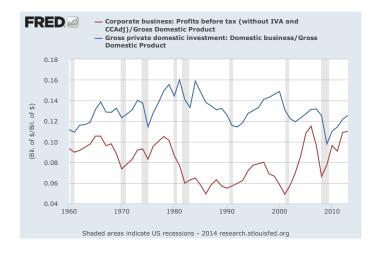
$$\dot{D} = \kappa (1 - \omega - rd)Y - (1 - \omega - rd)Y$$

Investment and profits, US 1960-2014

Asset price dynamics in stock-flow consistent macroeconomic model

M R Grasselli

Introduction


SFC models

Goodwin model

Keen model

Ponzi financing and Stock Prices Great Moderation

Extended Model

Keen model - Differential Equations

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwin model

Keen model

Ponzi financing and Stock Prices Great Moderation

Extended Model

Conclusions

Denote the debt ratio in the economy by d = D/Y, the model can now be described by the following system

$$\dot{\omega} = \omega \left[\Phi(\lambda) - \alpha \right]$$

$$\dot{\lambda} = \lambda \left[\frac{\kappa (1 - \omega - rd)}{\nu} - \alpha - \beta - \delta \right]$$
(1)

$$\dot{d} = d \left[r - rac{\kappa (1 - \omega - rd)}{
u} + \delta
ight] + \kappa (1 - \omega - rd) - (1 - \omega)$$

Example 2: convergence to the good equilibrium in a Keen model

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwin model

Keen model

Ponzi financing and Stock Prices Great Moderation

Extended Model

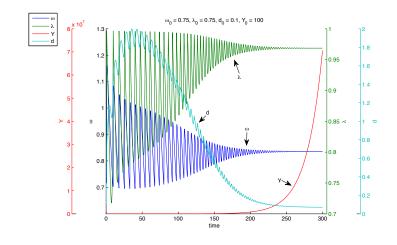


Figure: Grasselli and Costa Lima (2012)

Example 3: explosive debt in a Keen model

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwin model

Keen model

Ponzi financing and Stock Prices Great Moderation

Extended Model

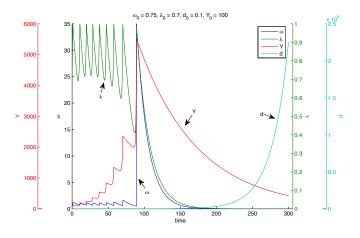


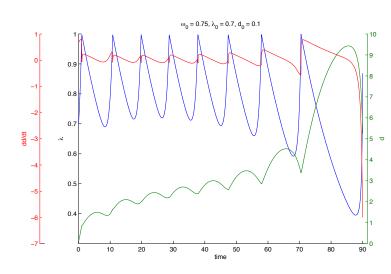
Figure: Grasselli and Costa Lima (2012)

Example 3 (continued): explosive debt in a Keen model

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction


SFC models

Goodwin model

Keen model

Ponzi financing and Stock Prices Great Moderation

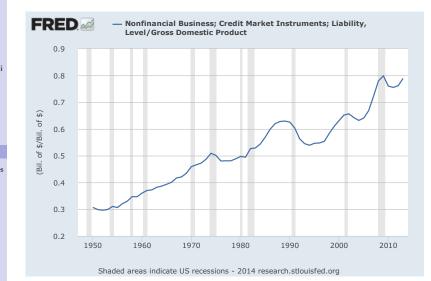
Extended Model

Corporate Debt share in the US 1950-2014

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction


SEC models

Goodwin model

Keen model

Ponzi financing and Stock Prices Great Moderation

Extended Model

Private debt matters!

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

Ponzi financing and Stock Prices Great Moderation

Extended Model

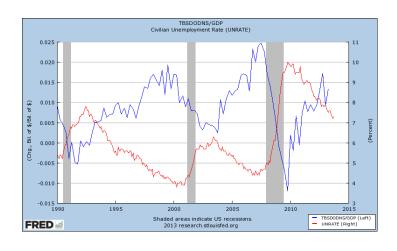


Figure: Change in debt and unemployment.

Basin of convergence for Keen model

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

Ponzi financing and Stock Prices Great Moderation

Extended Model

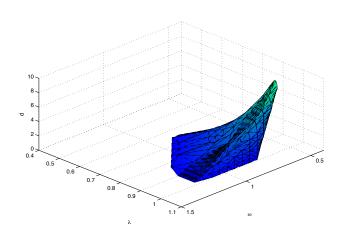


Figure: Grasselli and Costa Lima (2012)

Ponzi financing

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwin model

Keen model

Ponzi financing and Stock Prices

Great Moderation

Extended Model

Conclusions

To introduce the destabilizing effect of purely speculative investment, we consider a modified version of the previous model with

$$\dot{D} = \kappa (1 - \omega - rd)Y - (1 - \omega - rd)Y + P$$

 $\dot{P} = \Psi(g(\omega, d))P$

where $\Psi(\cdot)$ is an increasing function of the growth rate of economic output

$$g = \frac{\kappa(1 - \omega - rd)}{\nu} - \delta.$$

Example 4: effect of Ponzi financing

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

Ponzi financing and Stock Prices Great Moderation

Extended

Model

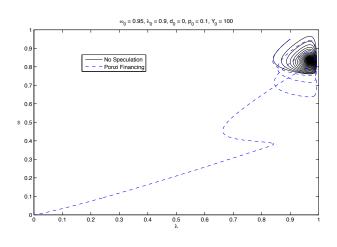


Figure: Grasselli and Costa Lima (2012)

Stock prices

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

Ponzi financing and Stock Prices

Great Moderation

Extended Model

Conclusions

Consider a stock price process of the form

$$\frac{dS_t}{S_t} = r_b dt + \sigma dW_t + \gamma \mu_t dt - \gamma dN^{(\mu_t)}$$

where N_t is a Cox process with stochastic intensity $\mu_t = M(p(t))$.

• The interest rate for private debt is modelled as $r_t = r_b + r_p(t)$ where

$$r_p(t) = \rho_1 (S_t + \rho_2)^{\rho_3}$$

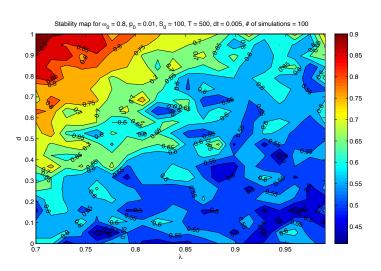
Stability map

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models


Goodwin model

Keen model

Ponzi financing and Stock Prices Great

Moderation Extended

Model

The Great Moderation in the U.S. - 1984 to 2007

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwin

Keen model Ponzi financing

and Stock Prices
Great
Moderation

Extended Model

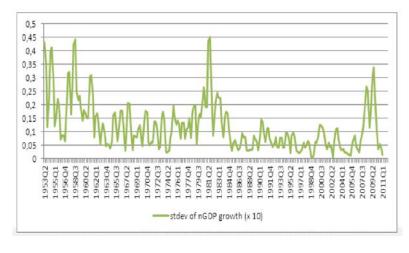


Figure: Grydaki and Bezemer (2013)

Possible explanations

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwin model

Keen model Ponzi financing

and Stock Prices
Great
Moderation

Extended Model

- Real-sector causes: inventory management, labour market changes, responses to oil shocks, external balances, etc.
- Financial-sector causes: credit accelerator models, financial innovation, deregulation, better monetary policy, etc.
- Grydaki and Bezemer (2013): growth of debt in the real sector.

Bank credit-to-GDP ratio in the U.S

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwin model

Keen model

Ponzi financing and Stock Prices Great

Extended Model

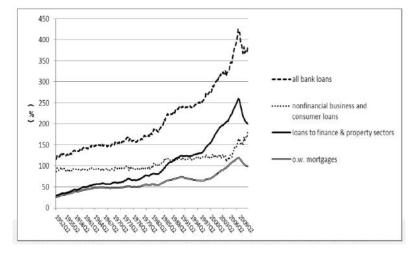


Figure: Grydaki and Bezemer (2013)

Excess credit growth moderated output volatility during, but not before the Great Moderation

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwin model

Keen model

Ponzi financing and Stock Prices Great

Moderation Extended Model

Conclusions

Before the Great Moderation	During the Great Moderation		
change in interest rate (-) => output volatility	excess credit growth (-) => output volatility		
change in interest rate (+) => inflation	output volatility (+) => excess credit growth		
excess credit growth (+) => change in interest rate	output volatility (-) => change in interest rate		
	excess credit growth (+) => change in interest rate		
	inflation (+) => change in interest rate		

Note: In the table, $x(-) \Rightarrow y$ denotes that a one-standard deviation shock in variable x impacts negatively on the change of variable y. Similarly, $x(+) \Rightarrow y$ indicates a positive impact.

Figure: Grydaki and Bezemer (2013)

Example 5: strongly moderated oscillations

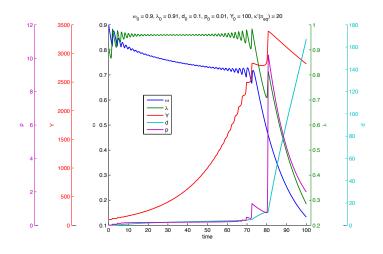
Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models

Goodwin


model

Keen model

Ponzi financing and Stock Prices

Great Moderation

Extended Model

Example 5 (cont): Shilnikov bifurcation

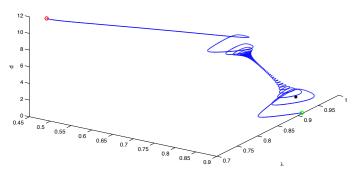
Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models

Goodwin


model Keen model

Ponzi financing and Stock Prices

Great Moderation

Extended Model

Shortcomings of Goodwin and Keen models

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction SEC models

Goodwin

Keen model

Extended Model

> Inventories Equities

Conclusions

 No independent specification of consumption (and therefore savings) for households:

$$C=W, \quad S_h=0 \qquad ext{(Goodwin)}$$
 $C=(1-\kappa(\pi))Y, \quad S_h=\dot{D}=\Pi_u-I \qquad ext{(Keen)}$

- Full capacity utilization.
- Everything that is produced is sold.
- No active market for equities.
- Skott (1989) uses prices as an accommodating variable in the short run.
- Chiarella, Flaschel and Franke (2005) propose a dynamics for inventory and expected sales.
- Grasselli and Nguyen Huu (2014) provide a synthesis, including equities and Tobin's portfolio choices.

Price dynamics

Asset price dynamics in stock-flow consistent macroeconomic model

M R Grasselli

Introduction

SFC models

Goodwin model

Keen model Extended

Model Prices Inventories

Equities

Conclusions

 A general price-wage dynamics taking into account both labor costs and expected inflation takes the form

$$egin{aligned} rac{\dot{\mathrm{w}}}{\mathrm{w}} &= \Phi(\lambda) + \eta_1 rac{\dot{p}}{p} + \eta_2 i_e \ rac{\dot{p}}{p} &= \Phi_p(c,p) + \eta_3 i_e \ rac{d}{dt}(i_e) &= \eta_4 \left[rac{\dot{p}}{p} - i_e
ight], \end{aligned}$$

Here we assume the simplified version

$$\frac{\dot{\mathbf{w}}}{\mathbf{w}} = \Phi(\lambda) + \gamma \frac{\dot{p}}{p},$$

$$\frac{\dot{p}}{p} = -\eta_p \left[1 - m \frac{c}{p} \right]$$

for a constants $0 \le \gamma \le 1$, $\eta_p > 0$ and $m \ge 1$.

Inventory dynamics

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwin model

Keen model

Extended Model

Prices Inventories Equities

Conclusions

• Denoting demand by $Y_d = C + I_k$, we postulate that expected sales evolve according to

$$\dot{Y}_e = (\alpha + \beta)Y_e + \eta_d(Y_d - Y_e).$$

• Moreover, we assume that the desired level of inventory is $V_d = f_d Y_e$ and that planned changes in inventory are given by

$$I_p = (\alpha + \beta)V_d + \eta_v(V_d - V).$$

- Finally, production is give by $Y = Y_e + I_p$, which in turn determines utilization through $u = Y/Y_{max} = \nu Y/K$.
- To complete the specification of firm and household behaviour we set

$$I_{k} = \left[\frac{\kappa(\pi_{e}) + \eta_{u}(u - \overline{u})}{\nu}\right] K$$

$$pC = c_{1}W + c_{2}D$$

Extended System

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwin model

Keen model

Extended Model

Prices Inventories

Equities

Conclusions

Defining $\omega_p = W/(pY)$ and $d_p = D/(pY)$ leads to $\dot{\omega}_p = \omega_p \left[\Phi(\lambda) - \alpha + (1 - \gamma) \eta_p (1 - m \omega_p) \right]$ $\dot{\lambda} = \lambda \left[g_e y_e + g_d y_d - \eta_v - \alpha - \beta \right]$ $\dot{d}_p = d_p \left[r - g_e y_e - g_d y_d + \eta_v + \eta_p (1 - m \omega_p) - c_2 \right]$ $+ (y_d - c_1) \omega_p$ $\dot{y}_e = y_e (\alpha + \beta - \eta_d - g_e y_e - g_d y_d + \eta_v) + \eta_d y_d$ $\dot{u} = u \left[g_e y_e + g_d y_d - \eta_v - y_d + c_1 \omega_p + c_2 d_p + \delta \right]$

for constants g_e, g_d and with

$$y_d = c_1 \omega_p + c_2 d_p + \frac{\kappa(\pi_e) + \eta_u(u - \overline{u})}{u}.$$

Firm decisions

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwin model

Keen model

Extended Model

Prices Inventories Equities

Conclusions

• Suppose now that firms finance new investment by issuing equities E at price p_e as well as new loans.

• Assuming that undistributed profits take the form $s_f\Pi$ for a constant s_f , the amount needed to be raised externally for new investment is $pl_k - s_f\Pi$, according to the proportions

$$\dot{D} = \nu_D[pI_k - s_f\Pi]$$

$$p_e \dot{E} = \nu_E[pI_k - s_f\Pi],$$

with $\nu_D + \nu_E = 1$.

• Here both I_k and ν_E can be functions of Tobin's $q = \frac{p_e E}{pK}$.

Household decisions

dynamics in stock-flow consistent macroeconomic model

Asset price

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

Extended Model Prices

Inventories Equities

Conclusions

On the other hand, the budget constraint for households is

$$W + (1-s_f)\Pi + rD = pC + \dot{D} + p_e \dot{E},$$

whereas their portfolio allocation is

$$p_e E = f_e(r_e^e) X_h$$
$$D = 1 - f_e(r_e^e) X_h,$$

where

$$r_e^e = \frac{(1 - s_f)\Pi}{p_e E} + \pi_e^e$$

 $\dot{\pi}_e^e = \beta_{\pi_e} \left(\frac{\dot{p}_e}{p_e} - \pi_e^e\right)$

• This leads to an extended system with two more equations for \dot{e}/e and $\dot{\pi}_e^e.$

Concluding remarks

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SEC models

Goodwin model

Keen model

Extended Model

- Macroeconomics is too important to be left to macroeconomists.
- Since Keynes's death it has developed in two radically different approaches:
 - The dominant one has the appearance of mathematical rigour (the SMD theorems notwithstanding), but is based on implausible assumptions, has poor fit to data in general, and is disastrously wrong during crises. Finance plays a negligible role
 - The heterodox approach is grounded in history and institutional understanding, takes empirical work much more seriously, but is generally averse to mathematics. Finance plays a major role.
- It's clear which approach should be embraced by mathematical finance

Thank you!

Asset price dynamics in stock-flow consistent macroeconomic model

M. R. Grasselli

Introduction

SFC models

Goodwin model

Keen model

Extended Model

