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2. Set-valued risk measures

Set-Valued Risk Measures:
Primal Representation
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2. Set-valued risk measures: Setup

Probability space (Ω, (Ft)t∈[0,T ],P)

d assets (may include different currencies)

Portfolio vectors in physical units (numéraire free), i.e. number
of units in d assets

Claim: X ∈ Lp := LpT (Rd) payoff (in physical units) at time T

Eligible portfolios M = Rm × {0}d−m, linear subspace of Rd of
portfolios that can be used to compensate risk (e.g. Dollars &
Euros)
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2.1 Set-valued risk measures: Primal representation

Mt := Lpt (M), Mt,+ := Mt ∩ Lpt,+
P(Z;C) := {A ⊆ Z | A = A+ C}
G(Z;C) := {A ⊆ Z | A = cl co(A+ C)}

Conditional Set-Valued Risk Measure

A set-valued function Rt : Lp → P(Mt;Mt,+) is a conditional risk
measure if

1 Finite at zero: ∅ 6= Rt(0) 6= Mt;

2 Mt translative: Rt(X +m) = Rt(X)−m for any m ∈Mt;

3 Lp
+ monotone: if X − Y ∈ Lp

+ then Rt(X) ⊇ Rt(Y ).

Normalized : for every X ∈ Lpt : Rt(X) = Rt(X) +Rt(0).

Normalized version:
R̄t(X) := Rt(X)−. Rt(0) = {u ∈Mt | Rt(0) + u ⊆ Rt(X)}.
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2.1 Set-valued risk measures: Primal representation

(Conditionally) convex : for all X,Y ∈ Lp, for all 0 ≤ λ ≤ 1
(λ ∈ L∞t (R) such that 0 ≤ λ ≤ 1)

Rt(λX + (1− λ)Y ) ⊇ λRt(X) + (1− λ)Rt(Y ).

(Conditionally) positive homogeneous: for all X ∈ Lp, for
all λ > 0 (λ ∈ L∞t (R++))

Rt(λX) = λRt(X).

(Conditionally) coherent : if it is (conditionally) convex and
(conditionally) positive homogeneous.
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2.1 Set-valued risk measures: Primal representation

K-compatible : for some set K ⊆ Lp if there exists a risk
measure R̃ such that Rt(X) =

⋃
k∈K R̃t(X − k).

Closed : if the graph of Rt is closed in the product topology, i.e.,

graphRt := {(X,u) ∈ Lp ×Mt | u ∈ Rt(X)} is closed.

(Conditionally) convex upper continuous [(c.)c.u.c.] : if
for any closed (conditionally) convex set D ∈ G(Mt;Mt,−) the
inverse image

R−1
t (D) := {X ∈ Lp | Rt(X) ∩D 6= ∅}

is closed.

Z. Feinstein Set-Valued Risk Measures and Bellman’s Principle 7 / 54



2.1 Set-valued risk measures: Primal representation

K-compatible : for some set K ⊆ Lp if there exists a risk
measure R̃ such that Rt(X) =

⋃
k∈K R̃t(X − k).

Closed : if the graph of Rt is closed in the product topology, i.e.,

graphRt := {(X,u) ∈ Lp ×Mt | u ∈ Rt(X)} is closed.

(Conditionally) convex upper continuous [(c.)c.u.c.] : if
for any closed (conditionally) convex set D ∈ G(Mt;Mt,−) the
inverse image

R−1
t (D) := {X ∈ Lp | Rt(X) ∩D 6= ∅}

is closed.

Z. Feinstein Set-Valued Risk Measures and Bellman’s Principle 7 / 54



2.1 Set-valued risk measures: Primal representation

Conditional Acceptance Set

A set At ⊆ Lp is an acceptance set at time t if

1 ∅ 6= At ∩Mt 6= Mt;

2 At + Lp+ ⊆ At

Acceptance set: At = {X ∈ Lp | 0 ∈ Rt(X)}
Risk measure: Rt(X) = {u ∈Mt | X + u ∈ At}
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2.1 Set-valued risk measures: Primal representation

Acceptance set: At = {X ∈ Lp | 0 ∈ Rt(X)}
Risk measure: Rt(X) = {u ∈Mt | X + u ∈ At}

Properties

Risk measure Acceptance set

(Conditionally) convex (Conditionally) convex

(Conditionally) coherent (Conditionally) convex cone

Closed graph Closed

B ⊆ Lp
B-monotone At +B = At
C ⊆Mt

Rt(X) : Lp → P(Mt;C) At + C ⊆ At
Rt(X) 6= ∅ ∀X ∈ Lp Lp = At +Mt

Rt(X) 6= Mt ∀X ∈ Lp Lp = (Lp\At) +Mt

Z. Feinstein Set-Valued Risk Measures and Bellman’s Principle 9 / 54



2.1 Set-valued risk measures: Primal representation

Acceptance set: At = {X ∈ Lp | 0 ∈ Rt(X)}
Risk measure: Rt(X) = {u ∈Mt | X + u ∈ At}

Properties

Risk measure Acceptance set

(Conditionally) convex (Conditionally) convex

(Conditionally) coherent (Conditionally) convex cone

Closed graph Closed

B ⊆ Lp
B-monotone At +B = At
C ⊆Mt

Rt(X) : Lp → P(Mt;C) At + C ⊆ At
Rt(X) 6= ∅ ∀X ∈ Lp Lp = At +Mt

Rt(X) 6= Mt ∀X ∈ Lp Lp = (Lp\At) +Mt

Z. Feinstein Set-Valued Risk Measures and Bellman’s Principle 9 / 54



2. Set-valued risk measures

Set-Valued Risk Measures:
Dual Representation
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2.2 Set-valued risk measures: Dual representation

Dual variables:

Wt :=
{

(Q, w) ∈Md ×
(
M+
t,+\M⊥t

)
|

Q = P|Ft , w
T
t (Q, w) ∈ Lq+

}
;

where wst (Q, w) = w · E
[
dQ
dP

∣∣∣Fs] =(
w1E

[
dQ1
dP

∣∣∣Fs] , ..., wdE [ dQd
dP

∣∣∣Fs])T.

Halfspace: Gt(w) :=
{
u ∈ Lpt | E

[
wTu

]
≥ 0
}

Conditional Halfspace: Γt(w) :=
{
u ∈ Lpt | wTu ≥ 0 a.s.

}

Set subtraction: A−. B := {m ∈Mt | B +m ⊆ A}
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2.2 Set-valued risk measures: Dual representation

Gt(w) :=
{
u ∈ Lpt | E

[
wTu

]
≥ 0
}

Convex Risk Measures

A function Rt : Lp → G(Mt;Mt,+) is a closed convex risk measure
if and only if

Rt(X) =
⋂

(Q,w)∈Wt

[(
EQ [−X| Ft] +Gt(w)

)
∩Mt −. βt(Q, w)

]
,

where βt is the minimal penalty function given by

βmin
t (Q, w) =

⋂
Y ∈At

(
EQ [−Y | Ft] +Gt(w)

)
∩Mt.
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2.2 Set-valued risk measures: Dual representation

Gt(w) :=
{
u ∈ Lpt | E

[
wTu

]
≥ 0
}

Coherent Risk Measures

A function Rt : Lp → G(Mt;Mt,+) is a closed coherent risk
measure if and only if

Rt(X) =
⋂

(Q,w)∈Wmax
t

(
EQ [−X| Ft] +Gt (w)

)
∩Mt,

where Wmax
t is the maximal set of dual variables given by

Wmax
t =

{
(Q, w) ∈ Wt | wTt (Q, w) ∈ A+

t

}
.
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2.2 Set-valued risk measures: Dual representation

Γt(w) :=
{
u ∈ Lpt | wTu ≥ 0 a.s.

}
Conditionally Convex and Coherent Risk Measures

A function Rt : Lp → G(Mt;Mt,+) is a closed conditionally convex risk
measure if and only if

Rt(X) =
⋂

(Q,w)∈Wt

[(
EQ [−X| Ft] + Γt(w)

)
∩Mt −. αt(Q, w)

]
,

where αt is the conditional penalty function given by

αt(Q, w) =
⋂

Y ∈At

(
EQ [Y | Ft] + Γt(w)

)
∩Mt.

Rt is additionally conditionally coherent if and only if

Rt(X) =
⋂

(Q,w)∈Wmax
t

(
EQ [−X| Ft] + Γt (w)

)
∩Mt.
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3. Time consistency

Time Consistency:
Multiportfolio Time Consistency
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3.1 Time consistency: Multiportfolio time consistency

Multiportfolio Time Consistency

A dynamic risk measure (Rt)
T
t=0 is multiportfolio time consistent

if the relation

Rs(X) ⊆
⋃
Y ∈Y

Rs(Y )⇒ Rt(X) ⊆
⋃
Y ∈Y

Rt(Y )

for any times t < s, any X ∈ Lp and any Y ⊆ Lp

Multiportfolio time consistency implies “time consistency”
defined by

Rs(X) ⊆ Rs(Y )⇒ Rt(X) ⊆ Rt(Y )

for any times t < s and X,Y ∈ Lp.
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3.1 Time consistency: Multiportfolio time consistency

Multiportfolio Time Consistency

If (Rt)
T
t=0 is normalized (Rt(X) = Rt(X) +Rt(0) for every X and t)

then the following are equivalent:

Rs(X) ⊆
⋃
Y ∈YRs(Y )⇒ Rt(X) ⊆

⋃
Y ∈YRt(Y );

Rt(X) =
⋃
Z∈Rs(X)Rt(−Z) =: Rt(−Rs(X));

At = As +At,s where At,s := At ∩Ms.

If discrete time t, s ∈ {0, 1, ..., T} then sufficient to have any of
these conditions with s = t+ 1.
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3.1 Time consistency: Multiportfolio time consistency

Multiportfolio Time Consistency

If (Rt)
T
t=0 is normalized, c.u.c., and convex then the following are

equivalent:

(Rt)
T
t=0 is multiportfolio time consistent;

βt(Q, w) = cl
(
βt,s(Q, w) + EQ [βs(Q, wst (Q, w))| Ft]

)
;

V
(Q,w)
t (X) ⊆ EQ

[
V

(Q,ws
t (Q,w))

s (X)
∣∣∣Ft] for every X ∈ Lp where

V
(Q,w)
t (X) := cl [Rt(X) + βt(Q, w)] .

When (Rt)
T
t=0 is coherent then

βt(Q, w) =

{
Gt(w) ∩Mt if (Q, w) ∈ Wmax

t

∅ else
.
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3.1 Time consistency: Multiportfolio time consistency

Multiportfolio Time Consistency

If (Rt)
T
t=0 is normalized, c.u.c., and conditionally convex with dual

representation defined on We
t := {(Q, w) ∈ Wt | Q ∼ P} then the

following are equivalent:

(Rt)
T
t=0 is multiportfolio time consistent;

αt(Q, w) = cl
(
αt,s(Q, w) + EQ [αs(Q, wst (Q, w))| Ft]

)
;

V(Q,w)
t (X) ⊆ clEQ

[
V(Q,ws

t (Q,w))
s (X)

∣∣∣Ft] for every X ∈ Lp where

V(Q,w)
t (X) := cl [Rt(X) + αt(Q, w)] .

When (Rt)
T
t=0 is conditionally coherent then

αt(Q, w) =

{
Γt(w) ∩Mt if (Q, w) ∈ Wmax

t

∅ else
.
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3.1 Time consistency: Multiportfolio time consistency

Let Q,R ∈Md then S = Q⊕s R if

dSi
dP

:=

E
[
dQi
dP

∣∣∣Fs] · dRi
dP

/
E
[
dRi
dP

∣∣∣Fs] on
{
E
[
dRi
dP

∣∣∣Fs] > 0
}
,

E
[
dQi
dP

∣∣∣Fs] else

Stability

A set Wt ⊆ Wt is stable at time t with respect to Wt,s and Ws if

(Q, w) ∈Wt implies (Q, ws
t (Q, w)) ∈Ws and

(Q, w) ∈Wt,s and R ∈Md such that (R, ws
t (Q, w)) ∈Ws implies

(Q⊕s R, w) ∈Wt
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3.1 Time consistency: Multiportfolio time consistency

Multiportfolio Time Consistency

If (Rt)
T
t=0 is normalized, c.u.c., and coherent then the following are

equivalent then (Rt)
T
t=0 is multiportfolio time consistent if and only if

any of the following equivalent properties holds for all times t < s

Wmax
t is stable with respect to Wmax

t,s and Wmax
s ;

Wmax
t =

{
(Q⊕s R, w) | (Q, w) ∈ Wmax

t,s , (R, wst (Q, w)) ∈ Wmax
s

}
;

Wmax
t =Wmax

t,s ∩Hs
t (Wmax

s ) where
Hs
t (W ) := {(Q, w) ∈ Wt : (Q, wst (Q, w)) ∈W}.
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3. Time consistency

Time Consistency:
Composition of Risk Measures
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3.2 Time consistency: Composition of risk measures

Composition of One-Step Risk Measures

Let (Rt)
T
t=0 be a risk measure then

(
R̃t

)T
t=0

is the multiportfolio time

consistent version if

R̃T (X) := RT (X); R̃t(X) :=
⋃

Z∈R̃t+1(X)

Rt(−Z)

Also given by:

Ãt := At,t+1 + Ãt+1;

β̃t(Q, w) := cl
(
βmin
t,t+1(Q, w) + EQ

[
β̃t+1(Q, wt+1

t (Q, w))
∣∣∣Ft]) ;

α̃t(Q, w) := cl
(
αmin
t,t+1(Q, w) + EQ [ α̃t+1(Q, wt+1

t (Q, w))
∣∣Ft]) ;

W̃t :=Wmax
t,t+1 ∩Ht+1

t (W̃t+1).
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4. Recursive algorithm

Recursive Algorithm
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4. Recursive algorithm: Setting

Discrete time t ∈ {0, 1, ..., T}
Finite probability space (Ω, (Ft)Tt=0 ,P)

Let Ωt be the set atoms in Ft
The set of successor nodes for ωt ∈ Ωt is given by
succ(ωt) = {ωt+1 ∈ Ωt+1 : ωt+1 ⊆ ωt}
Rt(X)[ωt] = {u(ωt) : u ∈ Rt(X)}
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Rt(X)[ωt] = {u(ωt) : u ∈ Rt(X)}

Z. Feinstein Set-Valued Risk Measures and Bellman’s Principle 25 / 54



4. Recursive algorithm: Setting

Discrete time t ∈ {0, 1, ..., T}
Finite probability space (Ω, (Ft)Tt=0 ,P)

Let Ωt be the set atoms in Ft
The set of successor nodes for ωt ∈ Ωt is given by
succ(ωt) = {ωt+1 ∈ Ωt+1 : ωt+1 ⊆ ωt}
Rt(X)[ωt] = {u(ωt) : u ∈ Rt(X)}

Z. Feinstein Set-Valued Risk Measures and Bellman’s Principle 25 / 54



4. Recursive algorithm: Setting

Rt(X)[ωt] = {u(ωt) : u ∈ Rt(X)}
Rt(X)[ωt] behaves like static risk measure

Pointwise Representation

If Rt has closed and conditionally convex images then u ∈ Rt(X) if
and only if u(ωt) ∈ Rt(X)[ωt] for every ωt ∈ Ωt.

If Rt is closed and conditionally convex, then Rt has closed and
conditionally convex images.

Rt is local if 1DRt(X) = 1DRt(1DX) for every D ∈ Ft
If Rt is local then Rt(X)[ωt] = Rt(1ωtX)[ωt]
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4.1 Recursive algorithm: Bellman’s Principle

Recursive Algorithm:
Bellman’s Principle
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4.1 Recursive algorithm: Bellman’s Principle

Want: The closed multi-portfolio time consistent version of Rt

Pointwise Representation

R̄T (X)[ωT ] = cl(RT (X)[ωT ])

R̄t(X)[ωt] = cl
⋃
{Rt,t+1(−Z)[ωt] : ∀ωt+1 ∈ succ(ωt) :

Z(ωt+1) ∈ R̄t+1(X)[ωt+1]
}
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4.1 Recursive algorithm: Bellman’s Principle

Dynamic set optimization:
R̄t(X)[ωt] = infZ∈Z̄t+1[ωt]Rt,t+1(−Z)[ωt] with

Z̄t+1[ωt] =
{
Z ∈ Lpt+1 : ∀ωt+1 ∈ succ(ωt) :

Z(ωt+1) ∈ R̄t+1(X)[ωt+1]
}

Equivalent to vector optimization problem:

R̄t(X)[ωt] = inf
(Z,Y )∈Zt+1[ωt]

Γ(Z, Y )

for Γ(Z, Y ) = Y and
Zt+1[ωt] =

{
(Z, Y ) ∈ Z̄t+1[ωt]×M : Y ∈ Rt,t+1(−Z)[ωt]

}
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4.1 Recursive algorithm: Bellman’s Principle

Interpretation as Bellman’s Principle:

The at t truncated optimal solution (Zs)
T
s=t obtained at time 0 from a

given Z0 ∈ R̃0(X) is still optimal at any later time point t ∈ {0, ..., T}.

Meaning: For the risk compensating portfolio holding Zt ∈ R̃t(X),
(Zs)

T
s=t satisfies the conditions Zs ∈ R̃s(X) and Zs−1 ∈ Rs−1(−Zs),

s ∈ {t, ..., T}.
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5. Computation

Computation
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5. Computation

Approximation: Not always possible or feasible to find the risk
measure exactly

Approximation

Rδt is a δ-approximation of Rt if for every X ∈ Lp

Rδt (X) + δm1 ⊆ Rt(X) ⊆ Rδt (X)

for a fixed m ∈ int(M+)

Question: How do errors grow with time steps?
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5. Computation

Propogation of Errors: Errors propogate linearly

If R̄εt+1(X) is an ε-approximation of R̄t+1(X) then composed
backwards R̄εt(X) is an ε-approximation of R̄t(X)

If R̄ε,γt (X) is a γ-approximation of ε-approximation R̄εt(X), then
R̄ε,γt (X) is an (ε+ γ)-approximation of R̄t(X)
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5. Computation

Polyhedral risk measures:

Linear vector optimization

Rt,t+1(−Z)[ωt] = {Ptz +Mt,+ : AtZ +Btz ≤ bt}
dim(M)-dimensional problem with
d× | succ(ωt)|+ |z|-dimensional pre-image space

Benson’s algorithm can be applied directly
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5. Computation

Convex risk measures:

Convex vector optimization

Rt,t+1(−Z)[ωt] = {Pt(z) +Mt,+ : g(Z, z) ≤ 0}
To calculate: a polyhedral δ-approximation of R̄t by recursively
calculating backwards in time

dim(M)-dimensional problem with
d× | succ(ωt)|+ |z|-dimensional pre-image space

Convex extension of Benson’s algorithm can be applied directly
with a given approximation error desired
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6. Examples

Examples:
Superhedging

Z. Feinstein Set-Valued Risk Measures and Bellman’s Principle 36 / 54



6.1 Examples: Superhedging

Convex transaction costs at time t: closed convex set
Rd+ ⊆ Kt[ω] ⊆ Rd (solvency region), positions transferable into
non-negative portfolios.

Self-Financing Portfolio Process

A self-financing portfolio process (Vt)
T
t=0 is a stochastic process of

portfolio vectors (of “physical units”) if starting with no assets you
can trade for Vt from the portfolio Vt−1.

∀t = 0, ..., T : Vt − Vt−1 ∈ −Kt

with V−1 = 0 and Kt is a solvency region.

Let Kt,s := −
∑s

r=t L
p
r(Kr) denote the portfolios reachable from

time t at time s.
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6.1 Examples: Superhedging

SHPt(X) := {u ∈ Lpt | −X + u ∈ −Kt,T }.

If the market model (Kt)
T
t=0 satisfies proper no-arbitrage

argument (robust no scalable arbitrage) then the superhedging
portfolios can be found via the dual representation with penalty
function:

αSHPt (Q, w) =

T∑
s=t

{u ∈ Lpt |

ess sup
k∈Lp

s(Ks)

−wTEQ [k| Ft] ≤ wTu

}

This is multiportfolio time consistent, but not necessarily
self-recursive.

Z. Feinstein Set-Valued Risk Measures and Bellman’s Principle 38 / 54



6.1 Examples: Superhedging

SHPt(X) := {u ∈ Lpt | −X + u ∈ −Kt,T }.
If the market model (Kt)

T
t=0 satisfies proper no-arbitrage

argument (robust no scalable arbitrage) then the superhedging
portfolios can be found via the dual representation with penalty
function:

αSHPt (Q, w) =

T∑
s=t

{u ∈ Lpt |

ess sup
k∈Lp

s(Ks)

−wTEQ [k| Ft] ≤ wTu

}

This is multiportfolio time consistent, but not necessarily
self-recursive.

Z. Feinstein Set-Valued Risk Measures and Bellman’s Principle 38 / 54



6.1 Examples: Superhedging

SHPt(X) := {u ∈ Lpt | −X + u ∈ −Kt,T }.
If the market model (Kt)

T
t=0 satisfies proper no-arbitrage

argument (robust no scalable arbitrage) then the superhedging
portfolios can be found via the dual representation with penalty
function:

αSHPt (Q, w) =

T∑
s=t

{u ∈ Lpt |

ess sup
k∈Lp

s(Ks)

−wTEQ [k| Ft] ≤ wTu

}

This is multiportfolio time consistent, but not necessarily
self-recursive.

Z. Feinstein Set-Valued Risk Measures and Bellman’s Principle 38 / 54



6.1 Examples: Superhedging

If solvency cones (Kt is a.s. a cone) then the superhedging
portfolios are conditionally coherent with dual variables defined
by

W{t,...,T} = {(Q, w) ∈ Wt | ∀s ∈ {t, ..., T} :

wst (Q, w) ∈ Lqs(K+
s )
}

This is self-recursive.
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6. Examples

Examples:
Average Value-at-Risk
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6.2 Examples: Average Value-at-Risk

Level λt ∈ L∞t bounded away from 0.

Average Value-at-Risk at time t is closed and conditionally
coherent risk measure defined by the dual variables:

Wλ
t :=

{
(Q, w) ∈ Wt | 0 � w ·

dQ
dP
� w/λt

}

Average Value-at-Risk is not time consistent.
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6.2 Examples: Average Value-at-Risk

Consider M := Rd and p = +∞
Multiportfolio time consistent version has dual variables:

W̃λ
t := {(Q, w) ∈ Wt | ∀s ∈ {t, t+ 1, ..., T − 1} :

wst (Q, w)/λs � ws+1
t (Q, w)

}
= {(Q, w) ∈ Wt | ∀s ∈ {t, t+ 1, ..., T − 1}∀i :

P
(
E
[
dQi

dP

∣∣∣∣Fs+1

]
≤ 1

λsi
E
[
dQi

dP

∣∣∣∣Fs] or wi = 0

)
= 1 ∀i

}
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6. Examples

Examples:
Entropic Risk Measure
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6.3 Examples: Entropic risk measure

Utility based shortfall risk measures:

Rut (X) := {m ∈Mt | E [u(X +m)| Ft] ∈ Ct}

for some vector utility function u and Ct ∈ G(Lpt ;L
p
t,+)

Restrictive entropic risk measure: M = Rd, ui(x) = 1−exp(−λix)
λi

and Ct = Lpt,+

Closed convex risk measure with penalty function

−αentt (Q, w) = Ht(Q|P)/λ+ Γt(w)

−βentt (Q, w) = Ht(Q|P)/λ+Gt(w)

where Ĥt(Q|P) = EQ
[

log(dQdP )
∣∣∣Ft]

c.u.c., normalized, and multiportfolio time consistent.
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6. Examples: 2 assets, proportional transaction costs

Examples:
2 assets, proportional transaction costs
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6. Examples: 2 assets, proportional transaction costs
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Figure: The superhedging risk measure and composed average value-at-risk
of an at-the-money European put option
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6. Examples: 3 assets, proportional transaction costs

Examples:
3 assets, proportional transaction costs
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6. Examples: 3 assets, proportional transaction costs

Figure: The composed relaxed worst case risk measure of an outperformance
option
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6. Examples: 3 assets, proportional transaction costs
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Figure: Contour plot of the efficient frontier of the at differing levels of
captial in the risk-less asset
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6. Examples: 2 assets, convex transaction costs

Examples:
2 assets, convex transaction costs
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4. Examples: 2 assets, convex transaction costs
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Figure: The superhedging risk measure and composed entropic risk
measures of a binary option
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6. Examples: 2 assets, convex transaction costs
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Figure: The superhedging risk measure and composed entropic risk
measures of a binary option; zoomed-in
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6. Examples: 2 assets, convex transaction costs
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Figure: The superhedging risk measure and composed entropic risk
measures of a binary option; near 0
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Thank you

Zachary Feinstein and Birgit Rudloff.
Time consistency of dynamic risk measures in markets with
transaction costs.
Quantitative Finance, 13(9):1473–1489, 2013.

Zachary Feinstein and Birgit Rudloff.
Multi-portfolio time consistency for set-valued convex and
coherent risk measures.
Finance and Stochastics, 19(1):67–107, 2015.

Zachary Feinstein and Birgit Rudloff.
A recursive algorithm for multivariate risk measures and a
set-valued Bellman’s principle.
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