Set-Valued Risk Measures and Bellman's Principle

ZACH FEINSTEIN

Electrical and Systems Engineering, Washington University in St. Louis

Joint work with Birgit Rudloff (Vienna University of Economics and Business)

University of Southern California March 7, 2016

- Set-valued risk measures
- 2 Time consistency
- **3** Recursive algorithm
- Opputation
- 5 Examples

Set-Valued Risk Measures: Primal Representation

2. Set-valued risk measures: Setup

- Probability space $(\Omega, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P})$
- *d* assets (may include different currencies)
- Portfolio vectors in physical units (numéraire free), i.e. number of units in *d* assets
- Claim: $X \in L^p := L^p_T(\mathbb{R}^d)$ payoff (in physical units) at time T
- Eligible portfolios $M = \mathbb{R}^m \times \{0\}^{d-m}$, linear subspace of \mathbb{R}^d of portfolios that can be used to compensate risk (e.g. Dollars & Euros)

•
$$M_t := L_t^p(M), \quad M_{t,+} := M_t \cap L_{t,+}^p$$

•
$$\mathcal{P}(\mathcal{Z};C) := \{A \subseteq \mathcal{Z} \mid A = A + C\}$$

•
$$\mathcal{G}(\mathcal{Z}; C) := \{A \subseteq \mathcal{Z} \mid A = \operatorname{cl}\operatorname{co}(A + C)\}$$

•
$$M_t := L_t^p(M), \quad M_{t,+} := M_t \cap L_{t,+}^p$$

•
$$\mathcal{P}(\mathcal{Z};C) := \{A \subseteq \mathcal{Z} \mid A = A + C\}$$

•
$$\mathcal{G}(\mathcal{Z};C) := \{A \subseteq \mathcal{Z} \mid A = \operatorname{cl}\operatorname{co}(A+C)\}$$

Conditional Set-Valued Risk Measure

A set-valued function $R_t: L^p \to \mathcal{P}(M_t; M_{t,+})$ is a conditional risk measure if

• Finite at zero:
$$\emptyset \neq R_t(0) \neq M_t$$
;

2
$$M_t$$
 translative: $R_t(X+m) = R_t(X) - m$ for any $m \in M_t$;

3 L^p_+ monotone: if $X - Y \in L^p_+$ then $R_t(X) \supseteq R_t(Y)$.

•
$$M_t := L_t^p(M), \quad M_{t,+} := M_t \cap L_{t,+}^p$$

•
$$\mathcal{P}(\mathcal{Z};C) := \{A \subseteq \mathcal{Z} \mid A = A + C\}$$

•
$$\mathcal{G}(\mathcal{Z};C) := \{A \subseteq \mathcal{Z} \mid A = \operatorname{cl}\operatorname{co}(A+C)\}$$

Conditional Set-Valued Risk Measure

A set-valued function $R_t: L^p \to \mathcal{P}(M_t; M_{t,+})$ is a conditional risk measure if

• Finite at zero:
$$\emptyset \neq R_t(0) \neq M_t$$
;

2
$$M_t$$
 translative: $R_t(X+m) = R_t(X) - m$ for any $m \in M_t$;

3 L^p_+ monotone: if $X - Y \in L^p_+$ then $R_t(X) \supseteq R_t(Y)$.

- Normalized: for every $X \in L_t^p : R_t(X) = R_t(X) + R_t(0)$.
- Normalized version: $\overline{R}_t(X) := R_t(X) - R_t(0) = \{ u \in M_t \mid R_t(0) + u \subseteq R_t(X) \}.$

• (Conditionally) convex: for all $X, Y \in L^p$, for all $0 \le \lambda \le 1$ $(\lambda \in L^{\infty}_t(\mathbb{R}) \text{ such that } 0 \le \lambda \le 1)$

$$R_t(\lambda X + (1-\lambda)Y) \supseteq \lambda R_t(X) + (1-\lambda)R_t(Y).$$

• (Conditionally) positive homogeneous: for all $X \in L^p$, for all $\lambda > 0$ ($\lambda \in L_t^{\infty}(\mathbb{R}_{++})$)

$$R_t(\lambda X) = \lambda R_t(X).$$

• (Conditionally) coherent: if it is (conditionally) convex and (conditionally) positive homogeneous.

• *K*-compatible: for some set $K \subseteq L^p$ if there exists a risk measure \tilde{R} such that $R_t(X) = \bigcup_{k \in K} \tilde{R}_t(X-k)$.

- *K*-compatible: for some set $K \subseteq L^p$ if there exists a risk measure \tilde{R} such that $R_t(X) = \bigcup_{k \in K} \tilde{R}_t(X-k)$.
- **Closed**: if the graph of R_t is closed in the product topology, i.e.,

graph $R_t := \{ (X, u) \in L^p \times M_t \mid u \in R_t(X) \}$ is closed.

• (Conditionally) convex upper continuous [(c.)c.u.c.]: if for any closed (conditionally) convex set $D \in \mathcal{G}(M_t; M_{t,-})$ the inverse image

$$R_t^{-1}(D) := \{ X \in L^p \mid R_t(X) \cap D \neq \emptyset \}$$

is closed.

Conditional Acceptance Set

A set $A_t \subseteq L^p$ is an acceptance set at time t if

Conditional Acceptance Set

A set $A_t \subseteq L^p$ is an acceptance set at time t if

$$a_t + L^p_+ \subseteq A_t$$

Conditional Acceptance Set

A set $A_t \subseteq L^p$ is an acceptance set at time t if

 $a_t + L^p_+ \subseteq A_t$

- Acceptance set: $A_t = \{X \in L^p \mid 0 \in R_t(X)\}$
- Risk measure: $R_t(X) = \{u \in M_t \mid X + u \in A_t\}$

- Acceptance set: $A_t = \{X \in L^p \mid 0 \in R_t(X)\}$
- Risk measure: $R_t(X) = \{u \in M_t \mid X + u \in A_t\}$

- Acceptance set: $A_t = \{X \in L^p \mid 0 \in R_t(X)\}$
- Risk measure: $R_t(X) = \{u \in M_t \mid X + u \in A_t\}$

Properties	
Risk measure	Acceptance set
(Conditionally) convex	(Conditionally) convex
(Conditionally) coherent	(Conditionally) convex cone
Closed graph	Closed
$B \subseteq L^p$	
<i>B</i> -monotone	$A_t + B = A_t$
$C \subseteq M_t$	
$R_t(X): L^p \to \mathcal{P}(M_t; C)$	$A_t + C \subseteq A_t$
$R_t(X) \neq \emptyset \; \forall X \in L^p$	$L^p = A_t + M_t$
$R_t(X) \neq M_t \; \forall X \in L^p$	$L^p = (L^p \backslash A_t) + M_t$

Set-Valued Risk Measures: Dual Representation

Set-Valued Risk Measures and Bellman's Principle

• Dual variables:

$$\mathcal{W}_t := \left\{ (\mathbb{Q}, w) \in \mathcal{M}^d \times \left(M_{t,+}^+ \backslash M_t^\perp \right) \mid \\ \mathbb{Q} = \mathbb{P}|_{\mathcal{F}_t}, \ w_t^T(\mathbb{Q}, w) \in L_+^q \right\};$$

where
$$w_t^s(\mathbb{Q}, w) = w \cdot \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}} \middle| \mathcal{F}_s\right] = \left(w_1 \mathbb{E}\left[\frac{d\mathbb{Q}_1}{d\mathbb{P}} \middle| \mathcal{F}_s\right], ..., w_d \mathbb{E}\left[\frac{d\mathbb{Q}_d}{d\mathbb{P}} \middle| \mathcal{F}_s\right]\right)^\mathsf{T}.$$

- Halfspace: $G_t(w) := \left\{ u \in L_t^p \mid \mathbb{E}\left[w^{\mathsf{T}} u \right] \ge 0 \right\}$
- Conditional Halfspace: $\Gamma_t(w) := \left\{ u \in L_t^p \mid w^{\mathsf{T}} u \ge 0 \text{ a.s.} \right\}$

• Dual variables:

$$\mathcal{W}_t := \left\{ (\mathbb{Q}, w) \in \mathcal{M}^d \times \left(M_{t,+}^+ \backslash M_t^\perp \right) \mid \\ \mathbb{Q} = \mathbb{P}|_{\mathcal{F}_t}, \ w_t^T(\mathbb{Q}, w) \in L_+^q \right\};$$

where
$$w_t^s(\mathbb{Q}, w) = w \cdot \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}} \middle| \mathcal{F}_s\right] = \left(w_1 \mathbb{E}\left[\frac{d\mathbb{Q}_1}{d\mathbb{P}} \middle| \mathcal{F}_s\right], ..., w_d \mathbb{E}\left[\frac{d\mathbb{Q}_d}{d\mathbb{P}} \middle| \mathcal{F}_s\right]\right)^{\mathsf{T}}.$$

- Halfspace: $G_t(w) := \left\{ u \in L_t^p \mid \mathbb{E}\left[w^\mathsf{T} u \right] \ge 0 \right\}$
- Conditional Halfspace: $\Gamma_t(w) := \left\{ u \in L_t^p \mid w^{\mathsf{T}} u \ge 0 \text{ a.s.} \right\}$
- Set subtraction: $A B := \{m \in M_t \mid B + m \subseteq A\}$

•
$$G_t(w) := \left\{ u \in L_t^p \mid \mathbb{E}\left[w^\mathsf{T} u \right] \ge 0 \right\}$$

Convex Risk Measures

A function $R_t : L^p \to \mathcal{G}(M_t; M_{t,+})$ is a *closed convex risk measure* if and only if

$$R_t(X) = \bigcap_{(\mathbb{Q}, w) \in \mathcal{W}_t} \left[\left(\mathbb{E}^{\mathbb{Q}} \left[-X \middle| \mathcal{F}_t \right] + G_t(w) \right) \cap M_t - \beta_t(\mathbb{Q}, w) \right],$$

where β_t is the minimal penalty function given by

$$\beta_t^{\min}(\mathbb{Q}, w) = \bigcap_{Y \in A_t} \left(\mathbb{E}^{\mathbb{Q}} \left[-Y | \mathcal{F}_t \right] + G_t(w) \right) \cap M_t.$$

•
$$G_t(w) := \left\{ u \in L_t^p \mid \mathbb{E}\left[w^\mathsf{T} u \right] \ge 0 \right\}$$

Coherent Risk Measures

A function $R_t : L^p \to \mathcal{G}(M_t; M_{t,+})$ is a *closed coherent risk measure* if and only if

$$R_{t}(X) = \bigcap_{(\mathbb{Q},w)\in\mathcal{W}_{t}^{\max}} \left(\mathbb{E}^{\mathbb{Q}} \left[-X \right| \mathcal{F}_{t} \right] + G_{t}(w) \right) \cap M_{t},$$

where \mathcal{W}_t^{\max} is the maximal set of dual variables given by

$$\mathcal{W}_t^{\max} = \left\{ (\mathbb{Q}, w) \in \mathcal{W}_t \mid w_t^T(\mathbb{Q}, w) \in A_t^+ \right\}.$$

•
$$\Gamma_t(w) := \left\{ u \in L_t^p \mid w^\mathsf{T} u \ge 0 \text{ a.s.} \right\}$$

Conditionally Convex and Coherent Risk Measures

A function $R_t: L^p \to \mathcal{G}(M_t; M_{t,+})$ is a *closed conditionally convex risk measure* if and only if

$$R_t(X) = \bigcap_{(\mathbb{Q},w)\in\mathcal{W}_t} \left[\left(\mathbb{E}^{\mathbb{Q}} \left[-X \middle| \mathcal{F}_t \right] + \Gamma_t(w) \right) \cap M_t - \alpha_t(\mathbb{Q},w) \right],$$

where α_t is the conditional penalty function given by

$$\alpha_t(\mathbb{Q}, w) = \bigcap_{Y \in A_t} \left(\mathbb{E}^{\mathbb{Q}} \left[Y | \mathcal{F}_t \right] + \Gamma_t(w) \right) \cap M_t.$$

 R_t is additionally *conditionally coherent* if and only if

$$R_{t}(X) = \bigcap_{(\mathbb{Q}, w) \in \mathcal{W}_{t}^{\max}} \left(\mathbb{E}^{\mathbb{Q}} \left[-X \middle| \mathcal{F}_{t} \right] + \Gamma_{t}(w) \right) \cap M_{t}.$$

Time Consistency: Multiportfolio Time Consistency

Set-Valued Risk Measures and Bellman's Principle

A dynamic risk measure $(R_t)_{t=0}^T$ is *multiportfolio time consistent* if the relation

$$R_s(X) \subseteq \bigcup_{Y \in \mathbb{Y}} R_s(Y) \Rightarrow R_t(X) \subseteq \bigcup_{Y \in \mathbb{Y}} R_t(Y)$$

for any times t < s, any $X \in L^p$ and any $\mathbb{Y} \subseteq L^p$

A dynamic risk measure $(R_t)_{t=0}^T$ is *multiportfolio time consistent* if the relation

$$R_s(X) \subseteq \bigcup_{Y \in \mathbb{Y}} R_s(Y) \Rightarrow R_t(X) \subseteq \bigcup_{Y \in \mathbb{Y}} R_t(Y)$$

for any times t < s, any $X \in L^p$ and any $\mathbb{Y} \subseteq L^p$

• Multiportfolio time consistency implies "time consistency" defined by

$$R_s(X) \subseteq R_s(Y) \Rightarrow R_t(X) \subseteq R_t(Y)$$

for any times t < s and $X, Y \in L^p$.

If $(R_t)_{t=0}^T$ is normalized $(R_t(X) = R_t(X) + R_t(0)$ for every X and t) then the following are equivalent:

• $R_s(X) \subseteq \bigcup_{Y \in \mathbb{Y}} R_s(Y) \Rightarrow R_t(X) \subseteq \bigcup_{Y \in \mathbb{Y}} R_t(Y);$

If $(R_t)_{t=0}^T$ is normalized $(R_t(X) = R_t(X) + R_t(0)$ for every X and t) then the following are equivalent:

•
$$R_s(X) \subseteq \bigcup_{Y \in \mathbb{Y}} R_s(Y) \Rightarrow R_t(X) \subseteq \bigcup_{Y \in \mathbb{Y}} R_t(Y);$$

•
$$R_t(X) = \bigcup_{Z \in R_s(X)} R_t(-Z) =: R_t(-R_s(X));$$

If $(R_t)_{t=0}^T$ is normalized $(R_t(X) = R_t(X) + R_t(0)$ for every X and t) then the following are equivalent:

•
$$R_s(X) \subseteq \bigcup_{Y \in \mathbb{Y}} R_s(Y) \Rightarrow R_t(X) \subseteq \bigcup_{Y \in \mathbb{Y}} R_t(Y);$$

•
$$R_t(X) = \bigcup_{Z \in R_s(X)} R_t(-Z) =: R_t(-R_s(X));$$

•
$$A_t = A_s + A_{t,s}$$
 where $A_{t,s} := A_t \cap M_s$.

If $(R_t)_{t=0}^T$ is normalized $(R_t(X) = R_t(X) + R_t(0)$ for every X and t) then the following are equivalent:

•
$$R_s(X) \subseteq \bigcup_{Y \in \mathbb{Y}} R_s(Y) \Rightarrow R_t(X) \subseteq \bigcup_{Y \in \mathbb{Y}} R_t(Y);$$

•
$$R_t(X) = \bigcup_{Z \in R_s(X)} R_t(-Z) =: R_t(-R_s(X));$$

•
$$A_t = A_s + A_{t,s}$$
 where $A_{t,s} := A_t \cap M_s$.

• If discrete time $t, s \in \{0, 1, ..., T\}$ then sufficient to have any of these conditions with s = t + 1.

If $(R_t)_{t=0}^T$ is normalized, c.u.c., and convex then the following are equivalent:

- $(R_t)_{t=0}^T$ is multiportfolio time consistent;
- $\beta_t(\mathbb{Q}, w) = \operatorname{cl}\left(\beta_{t,s}(\mathbb{Q}, w) + \mathbb{E}^{\mathbb{Q}}\left[\beta_s(\mathbb{Q}, w_t^s(\mathbb{Q}, w)) | \mathcal{F}_t\right]\right);$
- $V_t^{(\mathbb{Q},w)}(X) \subseteq \mathbb{E}^{\mathbb{Q}}\left[\left. V_s^{(\mathbb{Q},w_t^s(\mathbb{Q},w))}(X) \right| \mathcal{F}_t \right]$ for every $X \in L^p$ where

$$V_t^{(\mathbb{Q},w)}(X) := \operatorname{cl}\left[R_t(X) + \beta_t(\mathbb{Q},w)\right].$$

If $(R_t)_{t=0}^T$ is normalized, c.u.c., and convex then the following are equivalent:

- $(R_t)_{t=0}^T$ is multiportfolio time consistent;
- $\beta_t(\mathbb{Q}, w) = \operatorname{cl}\left(\beta_{t,s}(\mathbb{Q}, w) + \mathbb{E}^{\mathbb{Q}}\left[\beta_s(\mathbb{Q}, w_t^s(\mathbb{Q}, w)) | \mathcal{F}_t\right]\right);$
- $V_t^{(\mathbb{Q},w)}(X) \subseteq \mathbb{E}^{\mathbb{Q}}\left[\left.V_s^{(\mathbb{Q},w_t^s(\mathbb{Q},w))}(X)\right|\mathcal{F}_t\right]$ for every $X \in L^p$ where

$$V_t^{(\mathbb{Q},w)}(X) := \operatorname{cl}\left[R_t(X) + \beta_t(\mathbb{Q},w)\right].$$

When $(R_t)_{t=0}^T$ is coherent then

$$\beta_t(\mathbb{Q}, w) = \begin{cases} G_t(w) \cap M_t & \text{if } (\mathbb{Q}, w) \in \mathcal{W}_t^{\max} \\ \emptyset & \text{else} \end{cases}$$

If $(R_t)_{t=0}^T$ is normalized, c.u.c., and conditionally convex with dual representation defined on $\mathcal{W}_t^e := \{(\mathbb{Q}, w) \in \mathcal{W}_t \mid \mathbb{Q} \sim \mathbb{P}\}$ then the following are equivalent:

- $(R_t)_{t=0}^T$ is multiportfolio time consistent;
- $\alpha_t(\mathbb{Q}, w) = \operatorname{cl}\left(\alpha_{t,s}(\mathbb{Q}, w) + \mathbb{E}^{\mathbb{Q}}\left[\alpha_s(\mathbb{Q}, w_t^s(\mathbb{Q}, w)) \middle| \mathcal{F}_t\right]\right);$

•
$$\mathbb{V}_t^{(\mathbb{Q},w)}(X) \subseteq \operatorname{cl} \mathbb{E}^{\mathbb{Q}} \left[\mathbb{V}_s^{(\mathbb{Q},w_t^s(\mathbb{Q},w))}(X) \middle| \mathcal{F}_t \right]$$
 for every $X \in L^p$ where

$$\mathbb{V}_t^{(\mathbb{Q},w)}(X) := \operatorname{cl}\left[R_t(X) + \alpha_t(\mathbb{Q},w)\right].$$

When $(R_t)_{t=0}^T$ is conditionally coherent then

$$\alpha_t(\mathbb{Q}, w) = \begin{cases} \Gamma_t(w) \cap M_t & \text{if } (\mathbb{Q}, w) \in \mathcal{W}_t^{\max} \\ \emptyset & \text{else} \end{cases}$$

3.1 Time consistency: Multiportfolio time consistency

• Let
$$\mathbb{Q}, \mathbb{R} \in \mathcal{M}^d$$
 then $\mathbb{S} = \mathbb{Q} \oplus^s \mathbb{R}$ if

$$\frac{d\mathbb{S}_{i}}{d\mathbb{P}} := \begin{cases} \mathbb{E} \left[\frac{d\mathbb{Q}_{i}}{d\mathbb{P}} \middle| \mathcal{F}_{s} \right] \cdot \frac{d\mathbb{R}_{i}}{d\mathbb{P}} \middle/ \mathbb{E} \left[\frac{d\mathbb{R}_{i}}{d\mathbb{P}} \middle| \mathcal{F}_{s} \right] & \text{on} \left\{ \mathbb{E} \left[\frac{d\mathbb{R}_{i}}{d\mathbb{P}} \middle| \mathcal{F}_{s} \right] > 0 \right\}, \\ \mathbb{E} \left[\frac{d\mathbb{Q}_{i}}{d\mathbb{P}} \middle| \mathcal{F}_{s} \right] & \text{else} \end{cases}$$

Stability

A set $W_t \subseteq W_t$ is **stable** at time t with respect to $W_{t,s}$ and W_s if

- $(\mathbb{Q}, w) \in W_t$ implies $(\mathbb{Q}, w_t^s(\mathbb{Q}, w)) \in W_s$ and
- $(\mathbb{Q}, w) \in W_{t,s}$ and $\mathbb{R} \in \mathcal{M}^d$ such that $(\mathbb{R}, w_t^s(\mathbb{Q}, w)) \in W_s$ implies $(\mathbb{Q} \oplus^s \mathbb{R}, w) \in W_t$

If $(R_t)_{t=0}^T$ is normalized, c.u.c., and coherent then the following are equivalent then $(R_t)_{t=0}^T$ is multiportfolio time consistent if and only if any of the following equivalent properties holds for all times t < s

- \mathcal{W}_t^{\max} is stable with respect to $\mathcal{W}_{t,s}^{\max}$ and \mathcal{W}_s^{\max} ;
- $\mathcal{W}_t^{\max} = \left\{ (\mathbb{Q} \oplus^s \mathbb{R}, w) \mid (\mathbb{Q}, w) \in \mathcal{W}_{t,s}^{\max}, (\mathbb{R}, w_t^s(\mathbb{Q}, w)) \in \mathcal{W}_s^{\max} \right\};$
- $\mathcal{W}_t^{\max} = \mathcal{W}_{t,s}^{\max} \cap H_t^s(\mathcal{W}_s^{\max})$ where $H_t^s(W) := \{(\mathbb{Q}, w) \in \mathcal{W}_t : (\mathbb{Q}, w_t^s(\mathbb{Q}, w)) \in W\}.$

Time Consistency: Composition of Risk Measures

Set-Valued Risk Measures and Bellman's Principle

3.2 Time consistency: Composition of risk measures

Composition of One-Step Risk Measures

Let $(R_t)_{t=0}^T$ be a risk measure then $\left(\tilde{R}_t\right)_{t=0}^T$ is the multiportfolio time consistent version if

$$\tilde{R}_T(X) := R_T(X);$$
 $\tilde{R}_t(X) := \bigcup_{Z \in \tilde{R}_{t+1}(X)} R_t(-Z)$

3.2 Time consistency: Composition of risk measures

Composition of One-Step Risk Measures

Let $(R_t)_{t=0}^T$ be a risk measure then $(\tilde{R}_t)_{t=0}^T$ is the multiportfolio time consistent version if

$$\tilde{R}_T(X) := R_T(X);$$
 $\tilde{R}_t(X) := \bigcup_{Z \in \tilde{R}_{t+1}(X)} R_t(-Z)$

• Also given by:

$$\begin{split} \tilde{A}_t &:= A_{t,t+1} + \tilde{A}_{t+1}; \\ \tilde{\beta}_t(\mathbb{Q}, w) &:= \operatorname{cl} \left(\beta_{t,t+1}^{\min}(\mathbb{Q}, w) + \mathbb{E}^{\mathbb{Q}} \left[\left. \tilde{\beta}_{t+1}(\mathbb{Q}, w_t^{t+1}(\mathbb{Q}, w)) \right| \mathcal{F}_t \right] \right); \\ \tilde{\alpha}_t(\mathbb{Q}, w) &:= \operatorname{cl} \left(\alpha_{t,t+1}^{\min}(\mathbb{Q}, w) + \mathbb{E}^{\mathbb{Q}} \left[\left. \tilde{\alpha}_{t+1}(\mathbb{Q}, w_t^{t+1}(\mathbb{Q}, w)) \right| \mathcal{F}_t \right] \right); \\ \widetilde{\mathcal{W}}_t &:= \mathcal{W}_{t,t+1}^{\max} \cap H_t^{t+1}(\widetilde{\mathcal{W}}_{t+1}). \end{split}$$
Recursive Algorithm

- Discrete time $t \in \{0, 1, ..., T\}$
- Finite probability space $(\Omega, (\mathcal{F}_t)_{t=0}^T, \mathbb{P})$

- Discrete time $t \in \{0, 1, ..., T\}$
- Finite probability space $(\Omega, (\mathcal{F}_t)_{t=0}^T, \mathbb{P})$
- Let Ω_t be the set atoms in \mathcal{F}_t

- Discrete time $t \in \{0, 1, ..., T\}$
- Finite probability space $(\Omega, (\mathcal{F}_t)_{t=0}^T, \mathbb{P})$
- Let Ω_t be the set atoms in \mathcal{F}_t
- The set of successor nodes for $\omega_t \in \Omega_t$ is given by $\operatorname{succ}(\omega_t) = \{\omega_{t+1} \in \Omega_{t+1} : \omega_{t+1} \subseteq \omega_t\}$

- Discrete time $t \in \{0, 1, ..., T\}$
- Finite probability space $(\Omega, (\mathcal{F}_t)_{t=0}^T, \mathbb{P})$
- Let Ω_t be the set atoms in \mathcal{F}_t
- The set of successor nodes for $\omega_t \in \Omega_t$ is given by $\operatorname{succ}(\omega_t) = \{\omega_{t+1} \in \Omega_{t+1} : \omega_{t+1} \subseteq \omega_t\}$
- $R_t(X)[\omega_t] = \{u(\omega_t) : u \in R_t(X)\}$

- $R_t(X)[\omega_t] = \{u(\omega_t) : u \in R_t(X)\}$
- $R_t(X)[\omega_t]$ behaves like static risk measure

- $R_t(X)[\omega_t] = \{u(\omega_t) : u \in R_t(X)\}$
- $R_t(X)[\omega_t]$ behaves like static risk measure

Pointwise Representation

If R_t has closed and conditionally convex images then $u \in R_t(X)$ if and only if $u(\omega_t) \in R_t(X)[\omega_t]$ for every $\omega_t \in \Omega_t$.

- $R_t(X)[\omega_t] = \{u(\omega_t) : u \in R_t(X)\}$
- $R_t(X)[\omega_t]$ behaves like static risk measure

Pointwise Representation

If R_t has closed and conditionally convex images then $u \in R_t(X)$ if and only if $u(\omega_t) \in R_t(X)[\omega_t]$ for every $\omega_t \in \Omega_t$.

• If R_t is closed and conditionally convex, then R_t has closed and conditionally convex images.

- $R_t(X)[\omega_t] = \{u(\omega_t) : u \in R_t(X)\}$
- $R_t(X)[\omega_t]$ behaves like static risk measure

Pointwise Representation

If R_t has closed and conditionally convex images then $u \in R_t(X)$ if and only if $u(\omega_t) \in R_t(X)[\omega_t]$ for every $\omega_t \in \Omega_t$.

- If R_t is closed and conditionally convex, then R_t has closed and conditionally convex images.
- R_t is **local** if $1_D R_t(X) = 1_D R_t(1_D X)$ for every $D \in \mathcal{F}_t$

- $R_t(X)[\omega_t] = \{u(\omega_t) : u \in R_t(X)\}$
- $R_t(X)[\omega_t]$ behaves like static risk measure

Pointwise Representation

If R_t has closed and conditionally convex images then $u \in R_t(X)$ if and only if $u(\omega_t) \in R_t(X)[\omega_t]$ for every $\omega_t \in \Omega_t$.

- If R_t is closed and conditionally convex, then R_t has closed and conditionally convex images.
- R_t is **local** if $1_D R_t(X) = 1_D R_t(1_D X)$ for every $D \in \mathcal{F}_t$
- If R_t is local then $R_t(X)[\omega_t] = R_t(1_{\omega_t}X)[\omega_t]$

4.1 Recursive algorithm: Bellman's Principle

Recursive Algorithm: Bellman's Principle

4.1 Recursive algorithm: Bellman's Principle

Want: The closed multi-portfolio time consistent version of R_t

Want: The closed multi-portfolio time consistent version of R_t

Pointwise Representation

$$\bar{R}_T(X)[\omega_T] = \operatorname{cl}(R_T(X)[\omega_T])$$
$$\bar{R}_t(X)[\omega_t] = \operatorname{cl} \bigcup \{R_{t,t+1}(-Z)[\omega_t] : \forall \omega_{t+1} \in \operatorname{succ}(\omega_t) :$$
$$Z(\omega_{t+1}) \in \bar{R}_{t+1}(X)[\omega_{t+1}]\}$$

4.1 Recursive algorithm: Bellman's Principle

Dynamic set optimization:

 $\bar{R}_t(X)[\omega_t] = \inf_{Z \in \bar{\mathcal{Z}}_{t+1}[\omega_t]} R_{t,t+1}(-Z)[\omega_t]$ with

$$\bar{\mathcal{Z}}_{t+1}[\omega_t] = \left\{ Z \in L^p_{t+1} : \forall \omega_{t+1} \in \operatorname{succ}(\omega_t) : \\ Z(\omega_{t+1}) \in \bar{R}_{t+1}(X)[\omega_{t+1}] \right\}$$

Dynamic set optimization: $\bar{R}_t(X)[\omega_t] = \inf_{Z \in \bar{Z}_{t+1}[\omega_t]} R_{t,t+1}(-Z)[\omega_t]$ with $\bar{Z}_{t+1}[\omega_t] = \{Z \in L_{t+1}^p : \forall \omega_{t+1} \in \operatorname{succ}(\omega_t) : Z(\omega_{t+1}) \in \bar{R}_{t+1}(X)[\omega_{t+1}]\}$

Equivalent to **vector optimization** problem:

$$\bar{R}_t(X)[\omega_t] = \inf_{(Z,Y)\in\mathcal{Z}_{t+1}[\omega_t]} \Gamma(Z,Y)$$

for
$$\Gamma(Z, Y) = Y$$
 and
 $\mathcal{Z}_{t+1}[\omega_t] = \left\{ (Z, Y) \in \overline{\mathcal{Z}}_{t+1}[\omega_t] \times M : Y \in R_{t,t+1}(-Z)[\omega_t] \right\}$

4.1 Recursive algorithm: Bellman's Principle

Interpretation as Bellman's Principle:

Interpretation as Bellman's Principle:

The at t truncated optimal solution $(Z_s)_{s=t}^T$ obtained at time 0 from a given $Z_0 \in \tilde{R}_0(X)$ is still optimal at any later time point $t \in \{0, ..., T\}$.

Interpretation as Bellman's Principle:

The at t truncated optimal solution $(Z_s)_{s=t}^T$ obtained at time 0 from a given $Z_0 \in \tilde{R}_0(X)$ is still optimal at any later time point $t \in \{0, ..., T\}$.

Meaning: For the risk compensating portfolio holding $Z_t \in \hat{R}_t(X)$, $(Z_s)_{s=t}^T$ satisfies the conditions $Z_s \in \tilde{R}_s(X)$ and $Z_{s-1} \in R_{s-1}(-Z_s)$, $s \in \{t, ..., T\}$.

5. Computation

Computation

Approximation: Not always possible or feasible to find the risk measure exactly

Approximation: Not always possible or feasible to find the risk measure exactly

Approximation

 R_t^{δ} is a δ -approximation of R_t if for every $X \in L^p$

$$R_t^{\delta}(X) + \delta m \mathbf{1} \subseteq R_t(X) \subseteq R_t^{\delta}(X)$$

for a fixed $m \in int(M_+)$

Approximation: Not always possible or feasible to find the risk measure exactly

Approximation

 R_t^{δ} is a δ -approximation of R_t if for every $X \in L^p$

$$R_t^{\delta}(X) + \delta m \mathbf{1} \subseteq R_t(X) \subseteq R_t^{\delta}(X)$$

for a fixed $m \in int(M_+)$

Question: How do errors grow with time steps?

Propogation of Errors: Errors propogate linearly

Propogation of Errors: Errors propogate linearly

If $\bar{R}_{t+1}^{\epsilon}(X)$ is an ϵ -approximation of $\bar{R}_{t+1}(X)$ then composed backwards $\bar{R}_{t}^{\epsilon}(X)$ is an ϵ -approximation of $\bar{R}_{t}(X)$

Propogation of Errors: Errors propogate linearly

If $\bar{R}_{t+1}^{\epsilon}(X)$ is an ϵ -approximation of $\bar{R}_{t+1}(X)$ then composed backwards $\bar{R}_{t}^{\epsilon}(X)$ is an ϵ -approximation of $\bar{R}_{t}(X)$

If $\bar{R}_t^{\epsilon,\gamma}(X)$ is a γ -approximation of ϵ -approximation $\bar{R}_t^{\epsilon}(X)$, then $\bar{R}_t^{\epsilon,\gamma}(X)$ is an $(\epsilon + \gamma)$ -approximation of $\bar{R}_t(X)$

Polyhedral risk measures:

- Linear vector optimization
- $R_{t,t+1}(-Z)[\omega_t] = \{P_t z + M_{t,+} : A_t Z + B_t z \le b_t\}$
- dim(M)-dimensional problem with $d \times |\operatorname{succ}(\omega_t)| + |z|$ -dimensional pre-image space
- Benson's algorithm can be applied directly

Convex risk measures:

- Convex vector optimization
- $R_{t,t+1}(-Z)[\omega_t] = \{P_t(z) + M_{t,+} : g(Z,z) \le 0\}$
- To calculate: a polyhedral δ -approximation of \bar{R}_t by recursively calculating backwards in time
- dim(M)-dimensional problem with $d \times |\operatorname{succ}(\omega_t)| + |z|$ -dimensional pre-image space
- Convex extension of Benson's algorithm can be applied directly with a given approximation error desired

Set-Valued Risk Measures and Bellman's Principle

• Convex transaction costs at time t: closed convex set $\mathbb{R}^d_+ \subseteq K_t[\omega] \subseteq \mathbb{R}^d$ (solvency region), positions transferable into non-negative portfolios.

• Convex transaction costs at time t: closed convex set $\mathbb{R}^d_+ \subseteq K_t[\omega] \subseteq \mathbb{R}^d$ (solvency region), positions transferable into non-negative portfolios.

Self-Financing Portfolio Process

A self-financing portfolio process $(V_t)_{t=0}^T$ is a stochastic process of portfolio vectors (of "physical units") if starting with no assets you can trade for V_t from the portfolio V_{t-1} .

$$\forall t = 0, ..., T : V_t - V_{t-1} \in -K_t$$

with $V_{-1} = 0$ and K_t is a solvency region.

• Convex transaction costs at time t: closed convex set $\mathbb{R}^d_+ \subseteq K_t[\omega] \subseteq \mathbb{R}^d$ (solvency region), positions transferable into non-negative portfolios.

Self-Financing Portfolio Process

A self-financing portfolio process $(V_t)_{t=0}^T$ is a stochastic process of portfolio vectors (of "physical units") if starting with no assets you can trade for V_t from the portfolio V_{t-1} .

$$\forall t = 0, ..., T : V_t - V_{t-1} \in -K_t$$

with $V_{-1} = 0$ and K_t is a solvency region.

• Let $K_{t,s} := -\sum_{r=t}^{s} L_r^p(K_r)$ denote the portfolios reachable from time t at time s.

•
$$SHP_t(X) := \{ u \in L_t^p \mid -X + u \in -K_{t,T} \}.$$

- $SHP_t(X) := \{ u \in L_t^p \mid -X + u \in -K_{t,T} \}.$
- If the market model $(K_t)_{t=0}^T$ satisfies proper no-arbitrage argument (robust no scalable arbitrage) then the superhedging portfolios can be found via the dual representation with penalty function:

$$\alpha_t^{SHP}(\mathbb{Q}, w) = \sum_{s=t}^T \left\{ u \in L_t^p \mid \\ \underset{k \in L_s^p(K_s)}{\operatorname{ess\,sup}} - w^{\mathsf{T}} \mathbb{E}^{\mathbb{Q}} \left[k \mid \mathcal{F}_t \right] \le w^{\mathsf{T}} u \right\}$$

- $SHP_t(X) := \{ u \in L_t^p \mid -X + u \in -K_{t,T} \}.$
- If the market model $(K_t)_{t=0}^T$ satisfies proper no-arbitrage argument (robust no scalable arbitrage) then the superhedging portfolios can be found via the dual representation with penalty function:

$$\alpha_t^{SHP}(\mathbb{Q}, w) = \sum_{s=t}^T \left\{ u \in L_t^p \mid \\ \underset{k \in L_s^p(K_s)}{\operatorname{ess \, sup}} - w^{\mathsf{T}} \mathbb{E}^{\mathbb{Q}} \left[k \mid \mathcal{F}_t \right] \le w^{\mathsf{T}} u \right\}$$

• This is multiportfolio time consistent, but not necessarily self-recursive.

• If solvency cones $(K_t \text{ is a.s. a cone})$ then the superhedging portfolios are conditionally coherent with dual variables defined by

$$\mathcal{W}_{\{t,...,T\}} = \{(\mathbb{Q}, w) \in \mathcal{W}_t \mid \forall s \in \{t, ..., T\} : \\ w_t^s(\mathbb{Q}, w) \in L_s^q(K_s^+)\}$$

• If solvency cones $(K_t \text{ is a.s. a cone})$ then the superhedging portfolios are conditionally coherent with dual variables defined by

$$\mathcal{W}_{\{t,...,T\}} = \{ (\mathbb{Q}, w) \in \mathcal{W}_t \mid \forall s \in \{t, ..., T\} : \\ w_t^s(\mathbb{Q}, w) \in L_s^q(K_s^+) \}$$

• This is self-recursive.
Examples: Average Value-at-Risk

- Level $\lambda^t \in L^{\infty}_t$ bounded away from 0.
- Average Value-at-Risk at time t is closed and conditionally coherent risk measure defined by the dual variables:

$$\mathcal{W}_t^{\lambda} := \left\{ (\mathbb{Q}, w) \in \mathcal{W}_t \mid 0 \preceq w \cdot \frac{d\mathbb{Q}}{d\mathbb{P}} \preceq w/\lambda^t \right\}$$

- Level $\lambda^t \in L^{\infty}_t$ bounded away from 0.
- Average Value-at-Risk at time t is closed and conditionally coherent risk measure defined by the dual variables:

$$\mathcal{W}_t^{\lambda} := \left\{ (\mathbb{Q}, w) \in \mathcal{W}_t \mid 0 \preceq w \cdot \frac{d\mathbb{Q}}{d\mathbb{P}} \preceq w/\lambda^t \right\}$$

• Average Value-at-Risk is not time consistent.

- Consider $M := \mathbb{R}^d$ and $p = +\infty$
- Multiportfolio time consistent version has dual variables:

$$\begin{aligned} \widetilde{\mathcal{W}}_{t}^{\lambda} &:= \{ (\mathbb{Q}, w) \in \mathcal{W}_{t} \mid \forall s \in \{t, t+1, ..., T-1\} : \\ & w_{t}^{s}(\mathbb{Q}, w) / \lambda^{s} \succeq w_{t}^{s+1}(\mathbb{Q}, w) \} \\ &= \{ (\mathbb{Q}, w) \in \mathcal{W}_{t} \mid \forall s \in \{t, t+1, ..., T-1\} \forall i : \\ & \mathbb{P} \left(\mathbb{E} \left[\left. \frac{d\mathbb{Q}_{i}}{d\mathbb{P}} \right| \mathcal{F}_{s+1} \right] \leq \frac{1}{\lambda_{i}^{s}} \mathbb{E} \left[\left. \frac{d\mathbb{Q}_{i}}{d\mathbb{P}} \right| \mathcal{F}_{s} \right] \text{ or } w_{i} = 0 \right) = 1 \forall i \end{aligned} \end{aligned}$$

Examples: Entropic Risk Measure

6.3 Examples: Entropic risk measure

• Utility based shortfall risk measures:

$$R_t^u(X) := \{ m \in M_t \mid \mathbb{E} \left[\left. u(X+m) \right| \mathcal{F}_t \right] \in C_t \}$$

for some vector utility function u and $C_t \in \mathcal{G}(L_t^p; L_{t,+}^p)$

6.3 Examples: Entropic risk measure

• Utility based shortfall risk measures:

$$R_t^u(X) := \{ m \in M_t \mid \mathbb{E} \left[\left. u(X+m) \right| \mathcal{F}_t \right] \in C_t \}$$

for some vector utility function u and $C_t \in \mathcal{G}(L_t^p; L_{t,+}^p)$

• Restrictive entropic risk measure: $M = \mathbb{R}^d$, $u_i(x) = \frac{1 - \exp(-\lambda_i x)}{\lambda_i}$ and $C_t = L_{t,+}^p$

6.3 Examples: Entropic risk measure

• Utility based shortfall risk measures:

$$R_t^u(X) := \{ m \in M_t \mid \mathbb{E} \left[\left. u(X+m) \right| \mathcal{F}_t \right] \in C_t \}$$

for some vector utility function u and $C_t \in \mathcal{G}(L_t^p; L_{t,+}^p)$

- Restrictive entropic risk measure: $M = \mathbb{R}^d$, $u_i(x) = \frac{1 \exp(-\lambda_i x)}{\lambda_i}$ and $C_t = L_{t,+}^p$
- Closed convex risk measure with penalty function

$$-\alpha_t^{ent}(\mathbb{Q}, w) = H_t(\mathbb{Q}|\mathbb{P})/\lambda + \Gamma_t(w)$$
$$-\beta_t^{ent}(\mathbb{Q}, w) = H_t(\mathbb{Q}|\mathbb{P})/\lambda + G_t(w)$$

where $\hat{H}_t(\mathbb{Q}|\mathbb{P}) = \mathbb{E}^{\mathbb{Q}} \left[\log(\frac{d\mathbb{Q}}{d\mathbb{P}}) \middle| \mathcal{F}_t \right]$

• c.u.c., normalized, and multiportfolio time consistent.

6. Examples: 2 assets, proportional transaction costs

Examples: 2 assets, proportional transaction costs

6. Examples: 2 assets, proportional transaction costs

Figure: The superhedging risk measure and composed average value-at-risk of an at-the-money European put option

6. Examples: 3 assets, proportional transaction costs

Examples: 3 assets, proportional transaction costs

6. Examples: 3 assets, proportional transaction costs

Figure: The composed relaxed worst case risk measure of an outperformance option

Figure: Contour plot of the efficient frontier of the at differing levels of captial in the risk-less asset

Examples: 2 assets, convex transaction costs

Figure: The superhedging risk measure and composed entropic risk measures of a binary option

Figure: The superhedging risk measure and composed entropic risk measures of a binary option; zoomed-in

Figure: The superhedging risk measure and composed entropic risk measures of a binary option; near 0

Thank you

Zachary Feinstein and Birgit Rudloff. Time consistency of dynamic risk measures in markets with transaction costs.

Quantitative Finance, 13(9):1473–1489, 2013.

- Zachary Feinstein and Birgit Rudloff.
 Multi-portfolio time consistency for set-valued convex and coherent risk measures.
 Finance and Stochastics, 19(1):67–107, 2015.
- Zachary Feinstein and Birgit Rudloff. A recursive algorithm for multivariate risk measures and a set-valued Bellman's principle. *Preprint*, 2015.
- Zachary Feinstein and Birgit Rudloff.
 A supermartingale relation for multivariate risk measures. 2015.

Preprint

Z. Feinstein