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2. Set-valued risk measures

Set-Valued Risk Measures:
Primal Representation
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2. Set-valued risk measures: Setup

o Probability space (€2, (Ft):c(0,77, P)

e d assets (may include different currencies)

e Portfolio vectors in physical units (numéraire free), i.e. number
of units in d assets

o Claim: X € LP := L} (R?) payoff (in physical units) at time T

e Eligible portfolios M = R™ x {0}¢~™, linear subspace of R? of

portfolios that can be used to compensate risk (e.g. Dollars &
Euros)
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2.1 Set-valued risk measures: Primal representation

"] Mt = Lf(M), Mt+ = MtﬂLf+
e P(Z;C)={ACZ|A=A+C}
G(Z2;C):={ACZ|A=clco(A+C)}
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2.1 Set-valued risk measures: Primal representation

(] Mt = Lf(M), Mt,—i— = MtﬂL£+
e P(Z2,C)={ACZ|A=A+C}
0 G(Z,C0)={ACZ|A=clco(A+C)}

Conditional Set-Valued Risk Measure

A set-valued function Ry : LP — P(My; M 1) is a conditional risk
measure if

@ Finite at zero: ) # Ry (0) # My;
© M, translative: Ry(X +m) = Ry(X) — m for any m € M;;
@ L% monotone: if X —Y € L then Ry(X) D Ry(Y).
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2.1 Set-valued risk measures: Primal representation

(] Mt = Lf(M), Mt,—i— = MtﬂL£+
e P(Z2,C)={ACZ|A=A+C}
0 G(Z,C0)={ACZ|A=clco(A+C)}

Conditional Set-Valued Risk Measure

A set-valued function Ry : LP — P(My; M 1) is a conditional risk
measure if

@ Finite at zero: ) # Ry (0) # My;
© M, translative: Ry(X +m) = Ry(X) — m for any m € M;;
@ L% monotone: if X —Y € L then Ry(X) D Ry(Y).

o Normalized: for every X € LV : Ry(X) = Ry(X) + R (0).

o Normalized version:

Rt(X> = Rt(X) — Rt((]) = {u e M; ’ Rt(O) +u C Rt(X)}
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2.1 Set-valued risk measures: Primal representation

e (Conditionally) convex: for all XY € LP forall0 < A <1
(A € L°(R) such that 0 < A <1)

RiAX + (1= NY) D AR(X) + (1 — MR(Y).

e (Conditionally) positive homogeneous: for all X € LP, for

Ri(AX) = ARy(X).

o (Conditionally) coherent: if it is (conditionally) convex and
(conditionally) positive homogeneous.
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2.1 Set-valued risk measures: Primal representation

o K-compatible: for some set K C LP if there exists a risk
measure R such that Ry (X) = J,cp Re(X — k).
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2.1 Set-valued risk measures: Primal representation

o K-compatible: for some set K C LP if there exists a risk
measure R such that Ry (X) = J,cp Re(X — k).

o Closed: if the graph of R; is closed in the product topology, i.e.,
graph Ry := {(X,u) € LP x My | u € Ry(X)} is closed.

e (Conditionally) convex upper continuous [(c.)c.u.c.]: if
for any closed (conditionally) convex set D € G(My; M; _) the
inverse image

R7YD):={X € L | R(X)N D # 0}

is closed.
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2.1 Set-valued risk measures: Primal representation

Conditional Acceptance Set

A set A; C LP is an acceptance set at time ¢ if
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2.1 Set-valued risk measures: Primal representation

Conditional Acceptance Set

A set A; C LP is an acceptance set at time ¢ if
Q 0 # AN M # M
Q@ A +1IF C A
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2.1 Set-valued risk measures: Primal representation

Conditional Acceptance Set

A set A; C LP is an acceptance set at time ¢ if
Q 0 # AN M # M
© A+ LE C A

o Acceptance set: A, ={X € LP |0 € R(X)}
o Risk measure: Ry(X)={ue M; | X +ue A}
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2.1 Set-valued risk measures: Primal representation

o Acceptance set: Ay ={X € LP |0 € R(X)}
o Risk measure: Ry(X)={ue M; | X +ue A}
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2.1 Set-valued risk measures: Primal representation

o Acceptance set: Ay ={X € LP |0 € R(X)}
o Risk measure: Ry(X)={ue M; | X +ue A}

Properties
Risk measure Acceptance set
(Conditionally) convex (Conditionally) convex
(Conditionally) coherent | (Conditionally) convex cone
Closed graph Closed
BCLP
B-monotone A+ B =A;
C C M,
Rt(X) Lp—)P(Mt,C) A+ C C A
Ry(X)#0VX € LP LP = Ay + M,
Ri(X) £ M, VX € L? IP = (LP\A;) + M,
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2. Set-valued risk measures

Set-Valued Risk Measures:
Dual Representation
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2.2 Set-valued risk measures: Dual representation

@ Dual variables:

- {(@, w) € M? x (M++\ML) |

Q="Plx, v/ (Quw) € LL};
where w( w)_w-E[‘é%‘]-"s] -
(le[% ]—“} ...,wdE[iT; DT
e Halfspace: Gy(w) :={ue€ L} | E [wTu] >0}
e Conditional Halfspace. Dy(w) :=={ue Ll |wu>0as}
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2.2 Set-valued risk measures: Dual representation

@ Dual variables:

- {(@, w) € M? x (M++\ML) |

Q="Plx, v/ (Quw) € LL};
where w( w)_w-E[‘é%‘]-"s] -
(le[% ]—“} ...,wdE[iT; DT
e Halfspace: Gy(w) :={ue€ L} | E [wTu] >0}
e Conditional Halfspace. Dy(w) :=={ue Ll |wu>0as}

e Set subtraction: A — B:={m € M, | B+m C A}
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2.2 Set-valued risk measures: Dual representation

o Gy(w):={ue Ll |E[wu] >0}

Convex Risk Measures

A function Ry : LP — G(My; My 4+ ) is a closed convex risk measure
if and only if

R(X)= () [(EQ-XIF]+Gw)) 0 M, — pu@w)]
(Quw)eW:

where f; is the minimal penalty function given by

mnQw) = () (E@ [—Y|F] + Gt(w)> N M.
YeA;
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2.2 Set-valued risk measures: Dual representation

o Gy(w):={ue Ll |E[w'ul >0}

Coherent Risk Measures

A function Ry : LP — G(My; My +) is a closed coherent risk
measure if and only if

B(X)= [\ (EU-XIF]+Gw)nM,
(Qw)ewyrex

where W;"®* is the maximal set of dual variables given by

max:{(@7 eWt|w?(Q,w)€Az_}.
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2.2 Set-valued risk measures: Dual representation

o I'(w) :={ue Ll |wu>0as}

Conditionally Convex and Coherent Risk Measures

A function Ry : LP — G(My; M +) is a closed conditionally convex risk
measure if and only if

R(X)= () [EY[-X|F]+Tu(w))nM — a(Qw)],
(Qw)ewW,

where a4 is the conditional penalty function given by

a(Quw) = (] (E®[Y|F]+Tu(w)) N M,
YeA,

R, is additionally conditionally coherent if and only if

Ri(X) = ﬂ (EQ [—X| Fy] + Tt (w)) N M.
(Q,w)ewmax
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3. Time consistency

Time Consistency:
Multiportfolio Time Consistency
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3.1 Time consistency: Multiportfolio time consistency

Multiportfolio Time Consistency

A dynamic risk measure (Rt) _o is multiportfolio time consistent
if the relation

X)C | R(YV)= Ri(X) C | R(Y)
YeY YeY

for any times t < s, any X € LP and any Y C LP
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3.1 Time consistency: Multiportfolio time consistency

Multiportfolio Time Consistency

A dynamic risk measure (Rt)tTZO is multiportfolio time consistent
if the relation

X)C | R(YV)= Ri(X) C | R(Y)

Yey Yey

for any times ¢ < s, any X € LP and any Y C LP

o Multiportfolio time consistency implies “time consistency”
defined by

Ry(X) C Rs(Y) = Ri(X) C Ry(Y)
for any times t < s and X,Y € LP.
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3.1 Time consistency: Multiportfolio time consistency

Multiportfolio Time Consistency

If (Rt)tT:o is normalized (R:(X) = Ri(X) + R(0) for every X and ¢)
then the following are equivalent:

° RS(X) c UYGY RS(Y) = Rt(X) < UYEY Rt(Y>;
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3.1 Time consistency: Multiportfolio time consistency

Multiportfolio Time Consistency

If (Rt)tT:o is normalized (R:(X) = Ri(X) + R(0) for every X and ¢)
then the following are equivalent:

° Ry(X)C UYGY Rs(Y) = Ry(X) C UYEY Ry(Y);

o Ri(X) = UZeRS(X) Ry(=Z) = Ry(—Rs(X));
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3.1 Time consistency: Multiportfolio time consistency

Multiportfolio Time Consistency

If (Rt)tT:o is normalized (R:(X) = Ri(X) + R(0) for every X and ¢)
then the following are equivalent:

o Rs(X) C Uyey Bs(Y) = Re(X) € Uyey Re(Y);

o Ri(X) = UZeRS(X) Ry(=Z) = Ry(—Rs(X));

o Ay = As + Az s where A; 5 := Ay N M.
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3.1 Time consistency: Multiportfolio time consistency

Multiportfolio Time Consistency

If (Rt)tT:O is normalized (R:(X) = Ri(X) + R(0) for every X and ¢)
then the following are equivalent:

Rs(X) C UYGY Rs(Y) = Ry(X) C UYEY R(Y);
Ry(X) = UZeRS(X) Ry(=Z) = Ry(—Rs(X));
Ai = As + Az s where A; 5 := Ay N M.

If discrete time ¢,s € {0,1,..., T} then sufficient to have any of
these conditions with s =t 4 1.

Z. Feinstein Set-Valued Risk Measures and Bellman’s Principle



3.1 Time consistency: Multiportfolio time consistency

Multiportfolio Time Consistency

If (Rt)tT:0 is normalized, c.u.c., and convex then the following are
equivalent:

° (Rt)z;o is multiportfolio time consistent;
° f(Q,w) = cl (B,s(Q w) +E? [B:(Q, wi(Q, w))| F);
° Vt(Q’w)(X) C E@ [Vs(Q’wts(Q’w))(X)’ .7-}} for every X € LP where

V2 (X) = dl[R(X) + Bi(Q w)] .
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3.1 Time consistency: Multiportfolio time consistency

Multiportfolio Time Consistency

If (Rt) _o is normalized, c.u.c., and convex then the following are
equivalent:

(Rt) _o is multiportfolio time consistent;
° B1(Q,w) = cl (B1,(Q w) + E2 [85(Q, wi(Q w))| F]);
° Vt(Q’w)(X) CEQ [Vs(Q’wts(Q’w))(X)’ .7-}} for every X € LP where

V2 (X) = dl[R(X) + Bi(Q w)] .

When (Rt)tho is coherent then

Bt <Q7 ) {gt( w) N My if (Q,w) € Wa |
else
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3.1 Time consistency: Multiportfolio time consistency

Multiportfolio Time Consistency

If (Rt):{:g is normalized, c.u.c., and conditionally convex with dual
representation defined on Wf := {(Q,w) € W; | Q ~ P} then the
following are equivalent:

° (Rt)tho is multiportfolio time consistent;
° Oét(@, w) =cl (at,s(Q7 U)) + EQ [as(Q? wf(Qa w))’ ‘Ft]);
° VEQ’UJ) (X) CclEQ [VgQ’wf(Q’w))(X)‘ .7-}} for every X € LP where

V@ (X) = el [Ry(X) + ou(Q, w)] .

When (Rt)tT:() is conditionally coherent then

Fy(w) N M if (Q,w) € Wynax

0 else

at(@v U)) = {
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3.1 Time consistency: Multiportfolio time consistency

o Let QR € M?then S = Q @° R if

5 [2[B|7] % /e[

) dQ;
P B3| s

A set Wy C W, is stable at time ¢t with respect to W; s and W if
o (Q,w) € W; implies (Q, wi(Q,w)) € Wy and
o (Q,w) € W, 4 and R € M? such that (R, w;(Q,w)) € W implies

Q®*R,w) € W;

Z. Feinstein
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3.1 Time consistency: Multiportfolio time consistency

Multiportfolio Time Consistency

If (Rt)z;o is normalized, c.u.c., and coherent then the following are
equivalent then (Rt)z;o is multiportfolio time consistent if and only if
any of the following equivalent properties holds for all times ¢t < s

o W™ is stable with respect to W™ and W
o Wi ={(Q&°R,w) | (Qw) € W™, (R, w;(Q,w)) € W},
o W = Wiidx N Hy (W) Where

Hy (W) = {(Q,w) € W, : (Q, w}(Q,w)) € W}.
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3. Time consistency

Time Consistency:
Composition of Risk Measures
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3.2 Time consistency: Composition of risk measures

Composition of One-Step Risk Measures

AT
Let (Rt)tTZO be a risk measure then (Rt) is the multiportfolio time
consistent version if

Rp(X) := Rp(X); R(X):= |J Ru(-2
ZEeRi11(X)
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3.2 Time consistency: Composition of risk measures

Composition of One-Step Risk Measures

AT
Let (Rt)tTZO be a risk measure then (Rt) is the multiportfolio time
consistent version if

Rp(X) := Rp(X); R(X):= |J Ru(-2
ZEeRi11(X)

o Also given by:
A= A1 + Apyi;
Bil@ w) = el (B8 (@ w) + B2 [ A (Q wi (@, w))| 7)) 5
6 (Q,w) 1= el (a31(Qw) +E? [Gr1 (@, wf (@, w))| 7 )
Wi = WS 0 HE (Wi,

Z. Feinstein Set-Valued Risk Measures and Bellman’s Principle




4. Recursive algorithm

Recursive Algorithm
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4. Recursive algorithm: Setting

e Discrete time ¢ € {0,1,...,T}
e Finite probability space (€2, (ft)tho ,P)
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4. Recursive algorithm: Setting

e Discrete time ¢ € {0,1,...,T}
e Finite probability space (€2, (ft)tho ,P)
o Let ; be the set atoms in F;
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4. Recursive algorithm: Setting

Discrete time ¢ € {0,1,...,T}
Finite probability space (€2, (ft)tho ,P)
Let €; be the set atoms in F;

The set of successor nodes for wy € €); is given by
succ(wt) = {wt+1 € Qt+1 Twigr © wt}
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4. Recursive algorithm: Setting

Discrete time ¢ € {0,1,...,T}
Finite probability space (€2, (ft)tho ,P)
Let €; be the set atoms in F;

The set of successor nodes for wy € €); is given by
succ(wt) = {wt+1 € Qt+1 Twigr © wt}
Ry(X)[we] = {u(wt) : v € Re(X)}
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4. Recursive algorithm: Setting

o Ri(X)[wi] = {u(we) :ue Ry(X)}

o Ry(X)[w¢] behaves like static risk measure
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4. Recursive algorithm: Setting

o Ri(X)[wi] = {u(we) :ue Ry(X)}

o Ry(X)[w¢] behaves like static risk measure

Pointwise Representation

If R; has closed and conditionally convex images then u € Ry(X) if
and only if u(w;) € Ri(X)[wy] for every w; € Q.
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4. Recursive algorithm: Setting

o Ri(X)[wi] = {u(we) :ue Ry(X)}

o Ry(X)[w¢] behaves like static risk measure

Pointwise Representation

If R; has closed and conditionally convex images then u € Ry(X) if
and only if u(w;) € Ri(X)[wy] for every w; € Q.

o If R; is closed and conditionally convex, then R; has closed and
conditionally convex images.
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4. Recursive algorithm: Setting

o Ri(X)[wi] = {u(we) :ue Ry(X)}

o Ry(X)[w¢] behaves like static risk measure

Pointwise Representation

If R; has closed and conditionally convex images then u € Ry(X) if
and only if u(w;) € Ri(X)[wy] for every w; € Q.

o If R; is closed and conditionally convex, then R; has closed and
conditionally convex images.

e Ry islocal if 1pRy(X) =1pR(1pX) for every D € F;
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4. Recursive algorithm: Setting

o Ri(X)[wi] = {u(we) :ue Ry(X)}

o Ry(X)[w¢] behaves like static risk measure

Pointwise Representation

If R; has closed and conditionally convex images then u € Ry(X) if
and only if u(w;) € Ri(X)[wy] for every w; € Q.

o If R; is closed and conditionally convex, then R; has closed and
conditionally convex images.

e Ry islocal if 1pRy(X) =1pR(1pX) for every D € F;
o If Ry is local then Ry(X)[wi] = Ry(14,X)[wy]
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4.1 Recursive algorithm: Bellman’s Principle

Recursive Algorithm:
Bellman’s Principle
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4.1 Recursive algorithm: Bellman’s Principle

Want: The closed multi-portfolio time consistent version of Ry
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4.1 Recursive algorithm: Bellman’s Principle

Want: The closed multi-portfolio time consistent version of Ry

Pointwise Representation

Rp(X)wr] = l(Br(X)[wr])
Ry(X)[wy] = CIU {Rt14+1(—2Z)[wy] : Vw1 € succ(wy) :
Z(wi41) € Reg1(X)[wega]}
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4.1 Recursive algorithm: Bellman’s Principle

Dynamic set optimization:
Ry(X)lw] = inf ez, 1) Rer1(=2)[wi] with

Zii1[wi] {Z € Lt+1 Vw1 € suce(wy) :
Z(wit1) € Rey1(X)[wiia]}
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4.1 Recursive algorithm: Bellman’s Principle

Dynamic set optimization:

Ry(X)[we] = infyez, ) Bet1 (= 2)[wi] with

Zii1[wi] {Z € Lt+1 Vw1 € suce(wy) :
Z(wit1) € Rey1(X)[wiia]}

Equivalent to vector optimization problem:

R(X)w] = inf T(ZY
(X = 1 TEY)

for I'(Z,Y) =Y and
Zilw] ={(Z,Y) € Zipawi] x M Y € Ry g1 (—2)[wi]}
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4.1 Recursive algorithm: Bellman’s Principle

Interpretation as Bellman’s Principle:
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4.1 Recursive algorithm: Bellman’s Principle

Interpretation as Bellman’s Principle:
The at ¢ truncated optimal solution (Z5)I_, obtained at time 0 from a
given Zy € Rp(X) is still optimal at any later time point ¢ € {0, ..., T'}.
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4.1 Recursive algorithm: Bellman’s Principle

Interpretation as Bellman’s Principle:
The at ¢ truncated optimal solution (Z5)I_, obtained at time 0 from a
given Zy € Rp(X) is still optimal at any later time point ¢ € {0, ..., T'}.

Meaning: For the risk compensating portfolio holding Z; € Ri(X),
(Zs)1_, satisfies the conditions Z; € Rs(X) and Z,_1 € Rs_1(—Zs),
sed{t,...,T}.
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5. Computation

Computation
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5. Computation

Approximation: Not always possible or feasible to find the risk
measure exactly
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5. Computation

Approximation: Not always possible or feasible to find the risk
measure exactly

Approximation

R! is a 0-approximation of R; if for every X € LP
RO(X) +0ml C Ry(X) C R)(X)

for a fixed m € int(M;)
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5. Computation

Approximation: Not always possible or feasible to find the risk
measure exactly

Approximation

R! is a 0-approximation of R; if for every X € LP
RO(X) +0ml C Ry(X) C R)(X)

for a fixed m € int(M;)

Question: How do errors grow with time steps?
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5. Computation

Propogation of Errors: Errors propogate linearly
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5. Computation

Propogation of Errors: Errors propogate linearly

If Rs,,(X) is an e-approximation of Ry+1(X) then composed
backwards R§(X) is an e-approximation of R;(X)
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5. Computation

Propogation of Errors: Errors propogate linearly

If Rs,,(X) is an e-approximation of Ry+1(X) then composed
backwards R§(X) is an e-approximation of R;(X)

If R;7(X) is a y-approximation of e-approximation R§(X), then
Ry7(X) is an (e + y)-approximation of R;(X)
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5. Computation

Polyhedral risk measures:
o Linear vector optimization
Rt7t+1(—Z) [wt] = {PtZ + Mt7+ : AtZ + BtZ S bt}
dim(M )-dimensional problem with
d x |succ(wy)| + |z|-dimensional pre-image space

(]

Benson’s algorithm can be applied directly
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5. Computation

Convex risk measures:
o Convex vector optimization

Ry 1 (= Z)we] = {Pi(2) + My 4 : g(Z,2) < 0}

e To calculate: a polyhedral d-approximation of R; by recursively
calculating backwards in time

dim(M)-dimensional problem with

d x | succ(wy)| + |z|-dimensional pre-image space

Convex extension of Benson’s algorithm can be applied directly
with a given approximation error desired
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6. Examples

Examples:
Superhedging
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6.1 Examples: Superhedging

o Convex transaction costs at time ¢: closed convex set
R C K;[w] € R? (solvency region), positions transferable into
non-negative portfolios.
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6.1 Examples: Superhedging

o Convex transaction costs at time ¢: closed convex set
R? C Ky[w] C R? (solvency region), positions transferable into
non-negative portfolios.

Self-Financing Portfolio Process

A self-financing portfolio process (Vt)tho is a stochastic process of
portfolio vectors (of “physical units”) if starting with no assets you
can trade for V; from the portfolio V;_1.

Vi=0,..T: Vi— Vi1 € —K;

with V_; = 0 and K; is a solvency region.
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6.1 Examples: Superhedging

o Convex transaction costs at time ¢: closed convex set
R? C Ky[w] C R? (solvency region), positions transferable into
non-negative portfolios.

Self-Financing Portfolio Process

A self-financing portfolio process (Vt)tho is a stochastic process of
portfolio vectors (of “physical units”) if starting with no assets you
can trade for V; from the portfolio V;_1.

Vi=0,..T: Vi— Vi1 € —K;

with V_; = 0 and K; is a solvency region.

o Let K;s:=—> ", L¥(K,) denote the portfolios reachable from
time t at time s.
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6.1 Examples: Superhedging

o SHP(X):={uell| — X +ue—-K;r}.
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6.1 Examples: Superhedging

o SHP(X):={uell| — X +ue—-K;r}.

o If the market model (Kt)tT:o satisfies proper no-arbitrage
argument (robust no scalable arbitrage) then the superhedging
portfolios can be found via the dual representation with penalty
function:

T
TP (Q,w) = Z{u e LV |
s=t

esssup —w EQ[k| F] <wTu
keLE(Ks)
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6.1 Examples: Superhedging

o SHP(X):={uell| — X +ue—-K;r}.

o If the market model (Kt)tT:o satisfies proper no-arbitrage
argument (robust no scalable arbitrage) then the superhedging
portfolios can be found via the dual representation with penalty
function:

T
TP (Q,w) = Z{u e LV |
s=t

esssup —w EQ[k| F] <wTu
keLE(Ks)

@ This is multiportfolio time consistent, but not necessarily
self-recursive.
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6.1 Examples: Superhedging

o If solvency cones (K; is a.s. a cone) then the superhedging
portfolios are conditionally coherent with dual variables defined
by

We..my = {(Qw) e W, [ Vs e {t,...T}:
w; (Qw) € LUK )}
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6.1 Examples: Superhedging

o If solvency cones (K; is a.s. a cone) then the superhedging
portfolios are conditionally coherent with dual variables defined
by

Wi,y = {(Qw) e Wy [ Vs € {t,...T}:
wi(Q,w) € LYKT)}

o This is self-recursive.

Z. Feinstein Set-Valued Risk Measures and Bellman’s Principle



6. Examples

Examples:
Average Value-at-Risk
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6.2 Examples: Average Value-at-Risk

e Level ' € L bounded away from 0.

o Average Value-at-Risk at time ¢ is closed and conditionally
coherent risk measure defined by the dual variables:

Wt’\ = {(Q,w)GWﬂij-cggjw/)\t}
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6.2 Examples: Average Value-at-Risk

e Level ' € L bounded away from 0.

o Average Value-at-Risk at time ¢ is closed and conditionally
coherent risk measure defined by the dual variables:

Wt’\ = {(Q,w)GWﬂij-cggjw/)\t}

o Average Value-at-Risk is not time consistent.

Z. Feinstein Set-Valued Risk Measures and Bellman’s Principle



6.2 Examples: Average Value-at-Risk

o Consider M :=R? and p = 400
o Multiportfolio time consistent version has dual variables:
W = {(Q,w) e Wy | Vs € {t,t +1,...,T — 1} :
W} (@, w)/A° = wi T (Q,w)}

:{(Q,w)eWthe{t t+1,.., T —1}Vi:
dQ; dQ; ’
IP’(E [;% .7-"S+1] < )\SE [ d% .7-"5] or wi:O> :1Vz}
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6. Examples

Examples:
Entropic Risk Measure
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6.3 Examples: Entropic risk measure

o Utility based shortfall risk measures:
R?(X) = {m € M; ’ E [u(X + m)]}"t] € Ct}

for some vector utility function u and C; € G(L{; LY ;)
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6.3 Examples: Entropic risk measure

o Utility based shortfall risk measures:
R?(X) = {m € M; ’ E [U(X + m)]}"t] € Ct}

for some vector utility function u and C; € G(L{; LY ;)

o Restrictive entropic risk measure: M = R%, u;(z) = %Hm

and C; = Lf;+
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6.3 Examples: Entropic risk measure

o Utility based shortfall risk measures:
R?(X) = {m € M; ’ E [U(X + m)]}"t] € Ct}

for some vector utility function u and C; € G(L{; LY ;)

1—exp(—Aiz)

o Restrictive entropic risk measure: M = R%, u;(z) = v

and C; = Lf;+

o Closed convex risk measure with penalty function

—ai"(Q w) = Hy(QIP)/A + T¢(w)
—B"(Q,w) = Hy(QIP)/A + Gi(w)

where 1,(QIP) = E2 [1og(42)| 7]

@ c.u.c., normalized, and multiportfolio time consistent.
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6. Examples: 2 assets, proportional transaction costs

Examples:
2 assets, proportional transaction costs
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6. Examples: 2 assets, proportional transaction costs

1 . . . .
—©— Superhedging
= © = Average Value at Risk
0.5F
@
[}
%]
[
2
w
4
ok
0.5
I I I I I I I I I}
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Risk-free asset

Figure: The superhedging risk measure and composed average value-at-risk
of an at-the-money European put option

Z. Feinstein Set-Valued Risk Measures and Bellman’s Principle



6. Examples: 3 assets, proportional transaction costs

Examples:
3 assets, proportional transaction costs
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6. Examples: 3 assets, proportional transaction costs

¥

Figure: The composed relaxed worst case risk measure of an outperformance
option
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6. Examples: 3 assets,

20

proportional transaction costs
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Risky asset 2
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Figure: Contour plot of the efficient frontier of the at differing levels of

captial in the risk-less asset
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6. Examples: 2 assets, convex transaction costs

Examples:
2 assets, convex transaction costs
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2 assets, convex transaction costs

10000y )
Superhedging

9000 ‘| = = = Entropic: C = [[1;01,0:1]]

8000} - ¢ : ;| = — = Entropic: C = [[1,-0.90],[-0.90;1]]

7000

6000

5000

4000

Risky asset

3000
2000

1000

-100Q

I I I I I I T L i

-1000 O 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Risk-free asset

Figure: The superhedging risk measure and composed entropic risk
measures of a binary option
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2 assets, convex transaction costs

2001
Superhedging
\ = = = Entropic: C = [[1;0],[0;1]]
1501 - — - Entropic: C = [[1;-0.90],[~0.90;1]]
100
ﬁ 501
[
2
[%2}
x O
_50-
-100+
_15 I I I I I I I}
-150 -100 -50 0 50 100 150 200

Risk-free asset

Figure: The superhedging risk measure and composed entropic risk
measures of a binary option; zoomed-in
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Superhedging

4k N = = = Entropic: C = [[1;0],[0;1]]
N - = = Entropic: C = [[1;-0.90],[-0.90;1]]
N N
3r > ~
A

Risky asset
=
T

Risk-free asset

Figure: The superhedging risk measure and composed entropic risk
measures of a binary option; near 0
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Thank you
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