
Recent Developments on Functional Itô Calculus:
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Itô Formula

Theorem (Itô Formula)

Consider f ∈ C 1,2([0,T ]× R). Then

f (t,wt) = f (0, 0) +

∫ t

0

∂f

∂t
(s,ws)ds +

∫ t

0

∂f

∂x
(s,ws)dws+

+
1

2

∫ t

0

∂2f

∂x2
(s,ws)ds.

Only functions of the current value (current source of randomness).

This is a Fundamental Theorem of Calculus for functions with
unbounded variation and finite quadratic variation.

The term with the second derivative materializes the bounded
quadratic variation feature.
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Motivation

Various examples in real life show that “often the impact of randomness is
cumulative and depends on the history of the process”:

The price of a path-dependent options may depend on the whole
history of the underlying asset, e.g. option on the average (Asian), on
the maximum/minimum (Lookback, Barrier), etc.

Blood glucose levels depends on the history of food composition,
portion sizes and timing of meals.

The temperature at a certain location depends on the temperature
history and the history of other factors like humidity, ocean currents,
winds, clouds, solar radiation, etc.

The credit score of a person depends on payment history, amounts
owed, length of credit history, new credit accounts, etc.

Bruno Dupire, “Functional Itô Calculus”, (July 17, 2009), Available at
SSRN: http://ssrn.com/abstract=1435551
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Functional Itô Calculus - Space of Paths

Λt = {bounded càdlàg paths from [0, t]→ R}.
Space of paths:

Λ =
⋃

t∈[0,T ]

Λt .

Upper case - Paths: When X ∈ Λ belongs to the specific Λt , we
denote it by Xt .

I Since the Λt are disjoints, this is a consistent notation.
I If Xt is fixed, we denote the restriction of Xt to [0, s] by Xs .

Lower case - Process: X ∈ Λt ⇒ xs = Xt(s), s ∈ [0, t].
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Space of Paths

Flat Extension:

Xt,s−t(u) =

{
xu , if 0 ≤ u ≤ t
xt , if t ≤ u ≤ s.

b b

Bump:

X h
t (u) =

{
xu , if 0 ≤ u < t
xt + h , if u = t.

b

bb
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Topology

For any Xt ,Ys ∈ Λ, where we assume without loss of generality that s ≥ t,
define

dΛ(Xt ,Ys) = ‖Xt,s−t − Ys‖∞ + s − t.

t s
b b

Yt,s−t

Zs

6 / 34



Functional Derivatives

Time Derivative:

∆t f (Xt) = lim
∆t→0+

f (Xt,∆t)− f (Xt)

∆t

b b

Space Derivative:

∆x f (Xt) = lim
h→0

f (X h
t )− f (Xt)

h
.

b

bb
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Smooth Functional

Definition (Λ-Continuity)

As usual, a functional f : Λ −→ R is said Λ-continuous if it continuous
with respect to the metric dΛ.

Whenever it is defined, we will write ∆xx f = ∆x(∆x f ).

Definition (Smooth Functional)

We will call a functional f : Λ −→ R smooth if it is Λ-continuous and it
has Λ-continuous functional derivatives ∆t f , ∆x f and ∆xx f .
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Examples

f (Xt) = h(t, xt).

f is Λ-continuous if and only if h is continuous.

Time Derivative:

∆t f (Xt) = lim
∆t→0+

h(t + ∆t,Xt,∆t(t + ∆t))− h(t, xt)

∆t
=

= lim
∆t→0+

h(t + ∆t, xt)− h(t, xt)

∆t
=

=
∂h

∂t
(t, xt).

Space Derivative:

∆x f (Xt) = lim
h→0

h(t, xt + h)− h(t, xt)

h
=
∂h

∂x
(t, xt).
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Examples

f (Xt) =

∫ t

0
xudu.

Time Derivative:

∆t f (Xt) = lim
∆t→0+

∫ t+∆t
0 Xt,∆t(u)du −

∫ t
0 xudu

∆t

= lim
∆t→0+

∫ t+∆t
t xtdu

∆t
= xt .

Space Derivative:

∆x f (Xt) = lim
h→0

∫ t
0 X h

t (u)du −
∫ t

0 xudu

h
= 0.
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Functional Itô Formula

Theorem

Let x be a semi-martingale and f be a smooth functional. Then, for any
t ∈ [0,T ], we have

f (Xt) = f (X0) +

∫ t

0
∆t f (Xs)ds +

∫ t

0
∆x f (Xs)dxs

+
1

2

∫ t

0
∆xx f (Xs)d〈x〉s .
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Pricing PPDE

Local vol model: dxt = rxtdt + σ(Xt)dwt .

Derivative: maturity T and payoff functional g : ΛT −→ R.

The no-arbitrage price of this derivative is given by

f (Yt) = e−r(T−t)E [g(XT ) | Yt ] ,

for any path Yt ∈ Λ.
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Pricing PPDE

Theorem (Pricing PPDE)

If the f is a smooth functional, then, for any Yt in the topological support
of the process x,

∆t f (Yt) +
1

2
σ2(Yt)∆xx f (Yt) + r(yt∆x f (Yt)− f (Yt)) = 0,

with final condition f (YT ) = g(YT ). Equations of this type are called
Path-dependent PDE, or PPDE.

Under suitable assumptions on σ, the PPDE above will hold for any
continuous path.
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Adjoint of ∆x

R. Cont & D.-A. Fournié (2013) “Functional Itô Calculus and
Stochastic Integral Representation of Martingales”, The Annals of
Probability 41 (1), 109–133.

From now on, we consider the local volatility model dxt = σ(xt)dwt (so x
is a martingale) and define

H2
x =

{
f : Λ→ R ; E

[∫ T

0
f 2(Xt)d〈x〉t

]
< +∞

}
,

M2
x = {f : Λ→ R ; f (Xt) is also a martingale},

〈f , g〉H2
x

= E
[∫ T

0
f (Xt)g(Xt)d〈x〉t

]
〈f , g〉M2

x
= E [f (XT )g(XT )]
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Adjoint of ∆x

We write

Ix(f )(t) =

∫ t

0
f (Xs)dxs ,

for the classical Itô integral of the process (f (Xt))t∈[0,T ] with respect to
the martingale (xt)t∈[0,T ].

First notice we can write Itô Isometry as

〈f , g〉H2
x

= 〈Ix(f ), Ix(g)〉M2
x
.

We then have the following result:

Proposition

The adjoint of ∆x :M2
x −→ H2

x is the Itô integral:

〈∆x f , g〉H2
x

= 〈f , Ix(g)〉M2
x
.
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Path-dependence and the Computation of Greeks
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Introduction

Samy Jazaerli and Yuri F. Saporito, “Functional Itô Calculus,
Path-Dependence and the Computation of Greeks”, Submitted (2013)
Available at arXiv: http://arxiv.org/abs/1311.3881

We will show that for a class of (path-dependent) payoffs, there exists
a “weight” π such

Greek = E[ payoff × π].

In this talk we will show the details only for the Delta (the sensitivity
to the initial value of the asset).

Similar computations can be performed for the Gamma and Vega.
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Malliavin Calculus Approach

An application of Malliavin Calculus to this problem can be found in
the important paper:

E. Fournié et al, “Applications of Malliavin calculus to Monte
Carlo methods in finance”, Finance and Stochastics 5 (1999)
201–236.

Suppose the underlying asset is described by the local volatility model

dxt = σ(xt)dwt .

For fixed 0 < t1 < · · · < tm = T , consider the price

u(x) = E[φ(xt1 , . . . , xtm) | x0 = x ].
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Malliavin Calculus Approach

Under mild conditions,

u′(x) = E
[
φ(xt1 , . . . , xtm)

∫ T

0

a(t)zt
σ(xt)

dwt

∣∣∣∣ x0 = x

]
,

where y is the tangent process dzt = σ′(xt)ztdwt and

a ∈ Γm =

{
a ∈ L2([0,T ]) ;

∫ ti

0
a(t)dt = 1, ∀ i = 1, . . . ,m

}
.
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Malliavin Calculus Approach

Regarding the Malliavin Calculus, the payoffs of the form
φ(xt1 , . . . , xtm) seem arbitrary (but it is what is used in practice).

Similar formulas for other path-dependent derivatives can be found.

The set Γm degenerates if t1 = 0.
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Goals

Introduce a measure of path-dependence for functionals.

Understand the assumption that the payoff depends only on
xt1 , . . . , xtm .

Derive these weights using the framework of functional Itô calculus.
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Delta

The Delta of a derivative contract is the sensitivity of its price with
respect to the current value of the underlying asset: ∆x f (X0).

Define the tangent process: dzt = σ′(xt)ztdwt , with z0 = 1.

Applying ∆x to the functional PDE gives us

∆tx f (Xt) + σ(xt)σ
′(xt)∆xx f (Xt) +

1

2
σ2(xt)∆xxx f (Xt) = 0,

where ∆tx = ∆x∆t .

Hence

d(∆x f (Xt)zt) = (∆xt f (Xt)−∆tx f (Xt))ztdt + dmt .
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Lie Bracket

Definition (Lie Bracket)

The Lie bracket of the operators ∆t and ∆x will play a fundamental role
in what follows. It is defined as

[∆x ,∆t ]f (Yt) = ∆tx f (Yt)−∆xt f (Yt),

where ∆tx = ∆x∆t .
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Weak Path-Dependence

Definition (Weak Path-Dependence)

A functional f : Λ −→ R is called weakly path-dependent if

[∆x ,∆t ]f = 0.
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Lie Bracket

f (Xt) =

∫ t

0
xsds is not weakly path-dependent: [∆x ,∆t ]f = 1.

f (Xt) = h(t, xt) is weakly path-dependent.

f (Xt) =

∫ t

0

∫ s

0
xududs is weakly path-dependent.

f (Xt) = 〈x〉t is weakly path-dependent at continuous paths.

f (Xt) = E[φ(xt1 , . . . , xtm) | Xt ] has zero Lie bracket but for t1, . . . , tm.
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Delta

Remember that

d(∆x f (Xt)zt) = −[∆x ,∆t ]f (Xt)ztdt + dmt .

Hence, [∆x ,∆t ]f = 0 implies

∆x f (Xt)zt = ∆x f (X0) + mt ⇒
∫ T

0
∆x f (Xt)ztdt = ∆x f (X0)T +

∫ T

0
mtdt

⇒ ∆x f (X0)T = E
[∫ T

0
∆x f (Xt)ztdt

]
⇒ ∆x f (X0) =

〈
∆x f (X ),

1

T

z

σ2(x)

〉
H2

x

⇒ ∆x f (X0) =

〈
f (Xt), Ix

(
1

T

zt
σ2(x)

)〉
M2

x

⇒ ∆x f (X0) = E
[
g(XT )

1

T

∫ T

0

zt
σ(xt)

dwt

]
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Delta

Theorem

Consider a path-dependent derivative with maturity T and contract
g : ΛT −→ R. So, if the price of this derivative satisfy certain smoothness
conditions and it is weakly path-dependent, then ∆x f (Xt)zt is a
martingale and the following formula for the Delta is valid:

∆x f (X0) = E
[
g(XT )

1

T

∫ T

0

zt
σ(xt)

dwt

]
.

This is the same formula found by Fournié et al using Malliavin
calculus when g(XT ) = φ(xT ).

Our proof can be adapted to deal with payoffs φ(xt1 , . . . , xtm) and
Fournié et al ’s formula is derived.
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Strong Path-Dependence

How would these formulas change if f is strongly path-dependent?

∆x f (X0) = ∆x f (Xt)zt +

∫ t

0
[∆x ,∆t ]f (Xs)zsds −mt .

One can show then

∆x f (X0) =E
[
g(XT )

1

T

∫ T

0

zt
σ(xt)

dwt

]

+ E
[

1

T

∫ T

0

∫ t

0
[∆x ,∆t ]f (Xs)zsdsdt

]
.

For the second term, one should study the adjoint and/or an
integration by parts for ∆t and ∆x in H2

x .
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The Functional Meyer-Tanaka Formula
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The Meyer-Tanaka Formula

Classical versions of the Meyer-Tanaka Formula:

• f (xt) = f (x0) +

∫ t

0
fx(xs)dxs +

∫
R
Lx(t, y)dy fx(y),

• f (t, xt) = f (0, x0) +

∫ t

0
ft(s, xs)ds +

∫ t

0
fx(s, xs)dxs

+

∫
R
Lx(t, y)dy fx(t, y)−

∫
R

∫ t

0
Lx(s, y)ds,y fx(s, y),

where Lx(t, y) is the local time of the process x at y :

Lx(t, y) = lim
ε→0+

1

4ε

∫ t

0
1[y−ε,y+ε](xs)d〈x〉s .
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Convex Functionals

For a functional f : Λ −→ R, we define F : Λ× R −→ R as

F (Yt , h) = f (Y h
t ).

Definition (Convex Functionals)

We say f is a convex functional if F (Yt , ·) is a convex real function for any
Yt ∈ Λ.

Example: The running maximum is a simple example of a (non-smooth)
convex functional

m(Yt) = sup
0≤s≤t

ys .
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Mollification of Functionals

Definition (Mollified Functionals)

For a given functional f , we define the sequence of mollified functionals as

Fn(Yt , h) =

∫
R
ρn(h − ξ)F (Yt , ξ)dξ =

∫
R
ρn(ξ)F (Yt , h − ξ)dξ.

Remark: The mollifier can be taken as

ρ(z) = c exp

{
1

(z − 1)2 − 1

}
1[0,2](z),

where c is chosen in order to have
∫
R ρ(z)dz = 1.
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The Functional Meyer-Tanaka Formula

Theorem (Functional Meyer-Tanaka Formula)

Consider a convex functional f : Λ −→ R satisfying some regularity
assumptions. Then

f (Xt) = f (X0) +

∫ t

0
∆t f (Xs)ds +

∫ t

0
∆−x f (Xs)dxs

+

∫
R
Lx(t, y)dy∂

−
y F(Xt , y)−

∫ t

0

∫
R
Lx(s, y)ds,y∂

−
y F(Xs , y).

Yuri F. Saporito (2014) “Functional Meyer-Tanaka Formula”,
Submitted.
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Thank you!
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