Recent Developments on Functional Itô Calculus: Lie Bracket and Tanaka Formula

Yuri F. Saporito

USC Mathematical Finance Colloquium
Los Angeles, March 28, 2016

Itô Formula

Theorem (Itô Formula)
Consider $f \in C^{1,2}([0, T] \times \mathbb{R})$. Then

$$
\begin{gathered}
f\left(t, w_{t}\right)=f(0,0)+\int_{0}^{t} \frac{\partial f}{\partial t}\left(s, w_{s}\right) d s+\int_{0}^{t} \frac{\partial f}{\partial x}\left(s, w_{s}\right) d w_{s}+ \\
+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2} f}{\partial x^{2}}\left(s, w_{s}\right) d s
\end{gathered}
$$

- Only functions of the current value (current source of randomness).
- This is a Fundamental Theorem of Calculus for functions with unbounded variation and finite quadratic variation.
- The term with the second derivative materializes the bounded quadratic variation feature.

Motivation

Various examples in real life show that "often the impact of randomness is cumulative and depends on the history of the process":

- The price of a path-dependent options may depend on the whole history of the underlying asset, e.g. option on the average (Asian), on the maximum/minimum (Lookback, Barrier), etc.
- Blood glucose levels depends on the history of food composition, portion sizes and timing of meals.
- The temperature at a certain location depends on the temperature history and the history of other factors like humidity, ocean currents, winds, clouds, solar radiation, etc.
- The credit score of a person depends on payment history, amounts owed, length of credit history, new credit accounts, etc.

䍰 Bruno Dupire, "Functional Itô Calculus", (July 17, 2009), Available at SSRN: http://ssrn.com/abstract=1435551

Functional Itô Calculus - Space of Paths

- $\Lambda_{t}=\{$ bounded càdlàg paths from $[0, t] \rightarrow \mathbb{R}\}$.
- Space of paths:

$$
\Lambda=\bigcup_{t \in[0, T]} \Lambda_{t}
$$

- Upper case - Paths: When $X \in \Lambda$ belongs to the specific Λ_{t}, we denote it by X_{t}.
- Since the Λ_{t} are disjoints, this is a consistent notation.
- If X_{t} is fixed, we denote the restriction of X_{t} to $[0, s]$ by X_{s}.
- Lower case - Process: $X \in \Lambda_{t} \Rightarrow x_{s}=X_{t}(s), s \in[0, t]$.

Space of Paths

Flat Extension:

$$
X_{t, s-t}(u)= \begin{cases}x_{u}, & \text { if } 0 \leq u \leq t \\ x_{t}, & \text { if } t \leq u \leq s\end{cases}
$$

Bump:

$$
X_{t}^{h}(u)= \begin{cases}x_{u}, & \text { if } 0 \leq u<t \\ x_{t}+h, & \text { if } u=t .\end{cases}
$$

Topology

For any $X_{t}, Y_{s} \in \Lambda$, where we assume without loss of generality that $s \geq t$, define

$$
d_{\Lambda}\left(X_{t}, Y_{s}\right)=\left\|X_{t, s-t}-Y_{s}\right\|_{\infty}+s-t
$$

Functional Derivatives

Time Derivative:

$$
\Delta_{t} f\left(X_{t}\right)=\lim _{\Delta t \rightarrow 0^{+}} \frac{f\left(X_{t, \Delta t}\right)-f\left(X_{t}\right)}{\Delta t}
$$

Space Derivative:

$$
\Delta_{x} f\left(X_{t}\right)=\lim _{h \rightarrow 0} \frac{f\left(X_{t}^{h}\right)-f\left(X_{t}\right)}{h}
$$

Smooth Functional

Definition (\wedge-Continuity)

As usual, a functional $f: \Lambda \longrightarrow \mathbb{R}$ is said Λ-continuous if it continuous with respect to the metric d_{Λ}.

Whenever it is defined, we will write $\Delta_{x x} f=\Delta_{x}\left(\Delta_{x} f\right)$.

Definition (Smooth Functional)

We will call a functional $f: \Lambda \longrightarrow \mathbb{R}$ smooth if it is Λ-continuous and it has Λ-continuous functional derivatives $\Delta_{t} f, \Delta_{x} f$ and $\Delta_{x x} f$.

Examples

$f\left(X_{t}\right)=h\left(t, x_{t}\right)$.

- f is Λ-continuous if and only if h is continuous.
- Time Derivative:

$$
\begin{aligned}
\Delta_{t} f\left(X_{t}\right) & =\lim _{\Delta t \rightarrow 0^{+}} \frac{h\left(t+\Delta t, X_{t, \Delta t}(t+\Delta t)\right)-h\left(t, x_{t}\right)}{\Delta t}= \\
& =\lim _{\Delta t \rightarrow 0^{+}} \frac{h\left(t+\Delta t, x_{t}\right)-h\left(t, x_{t}\right)}{\Delta t}= \\
& =\frac{\partial h}{\partial t}\left(t, x_{t}\right)
\end{aligned}
$$

- Space Derivative:

$$
\Delta_{x} f\left(X_{t}\right)=\lim _{h \rightarrow 0} \frac{h\left(t, x_{t}+h\right)-h\left(t, x_{t}\right)}{h}=\frac{\partial h}{\partial x}\left(t, x_{t}\right)
$$

Examples

$f\left(X_{t}\right)=\int_{0}^{t} x_{u} d u$.

- Time Derivative:

$$
\begin{aligned}
\Delta_{t} f\left(X_{t}\right) & =\lim _{\Delta t \rightarrow 0^{+}} \frac{\int_{0}^{t+\Delta t} X_{t, \Delta t}(u) d u-\int_{0}^{t} x_{u} d u}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0^{+}} \frac{\int_{t}^{t+\Delta t} x_{t} d u}{\Delta t}=x_{t}
\end{aligned}
$$

- Space Derivative:

$$
\Delta_{x} f\left(X_{t}\right)=\lim _{h \rightarrow 0} \frac{\int_{0}^{t} X_{t}^{h}(u) d u-\int_{0}^{t} x_{u} d u}{h}=0
$$

Functional Itô Formula

Theorem

Let x be a semi-martingale and f be a smooth functional. Then, for any $t \in[0, T]$, we have

$$
\begin{aligned}
f\left(X_{t}\right)=f\left(X_{0}\right) & +\int_{0}^{t} \Delta_{t} f\left(X_{s}\right) d s+\int_{0}^{t} \Delta_{x} f\left(X_{s}\right) d x_{s} \\
& +\frac{1}{2} \int_{0}^{t} \Delta_{x x} f\left(X_{s}\right) d\langle x\rangle_{s}
\end{aligned}
$$

Pricing PPDE

- Local vol model: $d x_{t}=r x_{t} d t+\sigma\left(X_{t}\right) d w_{t}$.
- Derivative: maturity T and payoff functional $g: \Lambda_{T} \longrightarrow \mathbb{R}$.
- The no-arbitrage price of this derivative is given by

$$
f\left(Y_{t}\right)=e^{-r(T-t)} \mathbb{E}\left[g\left(X_{T}\right) \mid Y_{t}\right]
$$

for any path $Y_{t} \in \Lambda$.

Pricing PPDE

Theorem (Pricing PPDE)

If the f is a smooth functional, then, for any Y_{t} in the topological support of the process x,

$$
\Delta_{t} f\left(Y_{t}\right)+\frac{1}{2} \sigma^{2}\left(Y_{t}\right) \Delta_{x x} f\left(Y_{t}\right)+r\left(y_{t} \Delta_{x} f\left(Y_{t}\right)-f\left(Y_{t}\right)\right)=0,
$$

with final condition $f\left(Y_{T}\right)=g\left(Y_{T}\right)$. Equations of this type are called Path-dependent PDE, or PPDE.

Under suitable assumptions on σ, the PPDE above will hold for any continuous path.

Adjoint of Δ_{x}

R. Cont \& D.-A. Fournié (2013) "Functional Itô Calculus and Stochastic Integral Representation of Martingales", The Annals of Probability 41 (1), 109-133.

From now on, we consider the local volatility model $d x_{t}=\sigma\left(x_{t}\right) d w_{t}$ (so x is a martingale) and define

$$
\begin{aligned}
& \mathcal{H}_{x}^{2}=\left\{f: \Lambda \rightarrow \mathbb{R} ; \mathbb{E}\left[\int_{0}^{T} f^{2}\left(X_{t}\right) d\langle x\rangle_{t}\right]<+\infty\right\} \\
& \mathcal{M}_{x}^{2}=\left\{f: \Lambda \rightarrow \mathbb{R} ; f\left(X_{t}\right) \text { is also a martingale }\right\} \\
& \langle f, g\rangle_{\mathcal{H}_{x}^{2}}=\mathbb{E}\left[\int_{0}^{T} f\left(X_{t}\right) g\left(X_{t}\right) d\langle x\rangle_{t}\right] \\
& \langle f, g\rangle_{\mathcal{M}_{x}^{2}}=\mathbb{E}\left[f\left(X_{T}\right) g\left(X_{T}\right)\right]
\end{aligned}
$$

Adjoint of Δ_{x}

We write

$$
\mathcal{I}_{x}(f)(t)=\int_{0}^{t} f\left(X_{s}\right) d x_{s}
$$

for the classical Itô integral of the process $\left(f\left(X_{t}\right)\right)_{t \in[0, T]}$ with respect to the martingale $\left(x_{t}\right)_{t \in[0, T]}$.

First notice we can write Itô Isometry as

$$
\langle f, g\rangle_{\mathcal{H}_{x}^{2}}=\left\langle\mathcal{I}_{x}(f), \mathcal{I}_{x}(g)\right\rangle_{\mathcal{M}_{x}^{2}} .
$$

We then have the following result:

Proposition

The adjoint of $\Delta_{x}: \mathcal{M}_{x}^{2} \longrightarrow \mathcal{H}_{x}^{2}$ is the Itô integral:

$$
\left\langle\Delta_{x} f, g\right\rangle_{\mathcal{H}_{x}^{2}}=\left\langle f, \mathcal{I}_{x}(g)\right\rangle_{\mathcal{M}_{x}^{2}}
$$

Path-dependence and the Computation of Greeks

Introduction

目 Samy Jazaerli and Yuri F. Saporito, "Functional Itô Calculus, Path-Dependence and the Computation of Greeks", Submitted (2013) Available at arXiv: http://arxiv.org/abs/1311.3881

- We will show that for a class of (path-dependent) payoffs, there exists a "weight" π such

$$
\text { Greek }=\mathbb{E}[\text { payoff } \times \pi]
$$

- In this talk we will show the details only for the Delta (the sensitivity to the initial value of the asset).
- Similar computations can be performed for the Gamma and Vega.

Malliavin Calculus Approach

- An application of Malliavin Calculus to this problem can be found in the important paper:
E. Fournié et al, "Applications of Malliavin calculus to Monte Carlo methods in finance", Finance and Stochastics 5 (1999) 201-236.
- Suppose the underlying asset is described by the local volatility model

$$
d x_{t}=\sigma\left(x_{t}\right) d w_{t}
$$

- For fixed $0<t_{1}<\cdots<t_{m}=T$, consider the price

$$
u(x)=\mathbb{E}\left[\phi\left(x_{t_{1}}, \ldots, x_{t_{m}}\right) \mid x_{0}=x\right] .
$$

Malliavin Calculus Approach

- Under mild conditions,

$$
u^{\prime}(x)=\mathbb{E}\left[\left.\phi\left(x_{t_{1}}, \ldots, x_{t_{m}}\right) \int_{0}^{T} \frac{a(t) z_{t}}{\sigma\left(x_{t}\right)} d w_{t} \right\rvert\, x_{0}=x\right],
$$

where y is the tangent process $d z_{t}=\sigma^{\prime}\left(x_{t}\right) z_{t} d w_{t}$ and

$$
a \in \Gamma_{m}=\left\{a \in L^{2}([0, T]) ; \int_{0}^{t_{i}} a(t) d t=1, \forall i=1, \ldots, m\right\} .
$$

Malliavin Calculus Approach

- Regarding the Malliavin Calculus, the payoffs of the form $\phi\left(x_{t_{1}}, \ldots, x_{t_{m}}\right)$ seem arbitrary (but it is what is used in practice).
- Similar formulas for other path-dependent derivatives can be found.
- The set Γ_{m} degenerates if $t_{1}=0$.

Goals

- Introduce a measure of path-dependence for functionals.
- Understand the assumption that the payoff depends only on $x_{t_{1}}, \ldots, x_{t_{m}}$.
- Derive these weights using the framework of functional Itô calculus.

Delta

- The Delta of a derivative contract is the sensitivity of its price with respect to the current value of the underlying asset: $\Delta_{x} f\left(X_{0}\right)$.
- Define the tangent process: $d z_{t}=\sigma^{\prime}\left(x_{t}\right) z_{t} d w_{t}$, with $z_{0}=1$.
- Applying Δ_{x} to the functional PDE gives us

$$
\Delta_{t x} f\left(X_{t}\right)+\sigma\left(x_{t}\right) \sigma^{\prime}\left(x_{t}\right) \Delta_{x x} f\left(X_{t}\right)+\frac{1}{2} \sigma^{2}\left(x_{t}\right) \Delta_{x x x} f\left(X_{t}\right)=0
$$

where $\Delta_{t x}=\Delta_{x} \Delta_{t}$.

- Hence

$$
d\left(\Delta_{x} f\left(X_{t}\right) z_{t}\right)=\left(\Delta_{x t} f\left(X_{t}\right)-\Delta_{t x} f\left(X_{t}\right)\right) z_{t} d t+d m_{t}
$$

Lie Bracket

Definition (Lie Bracket)

The Lie bracket of the operators Δ_{t} and Δ_{x} will play a fundamental role in what follows. It is defined as

$$
\left[\Delta_{x}, \Delta_{t}\right] f\left(Y_{t}\right)=\Delta_{t x} f\left(Y_{t}\right)-\Delta_{x t} f\left(Y_{t}\right),
$$

where $\Delta_{t x}=\Delta_{x} \Delta_{t}$.

Definition (Weak Path-Dependence)

A functional $f: \Lambda \longrightarrow \mathbb{R}$ is called weakly path-dependent if

$$
\left[\Delta_{x}, \Delta_{t}\right] f=0
$$

Lie Bracket

- $f\left(X_{t}\right)=\int_{0}^{t} x_{s} d s$ is not weakly path-dependent: $\left[\Delta_{x}, \Delta_{t}\right] f=1$.
- $f\left(X_{t}\right)=h\left(t, x_{t}\right)$ is weakly path-dependent.
- $f\left(X_{t}\right)=\int_{0}^{t} \int_{0}^{s} x_{u} d u d s$ is weakly path-dependent.
- $f\left(X_{t}\right)=\langle x\rangle_{t}$ is weakly path-dependent at continuous paths.
- $f\left(X_{t}\right)=\mathbb{E}\left[\phi\left(x_{t_{1}}, \ldots, x_{t_{m}}\right) \mid X_{t}\right]$ has zero Lie bracket but for t_{1}, \ldots, t_{m}.

Delta

Remember that

$$
d\left(\Delta_{x} f\left(X_{t}\right) z_{t}\right)=-\left[\Delta_{x}, \Delta_{t}\right] f\left(X_{t}\right) z_{t} d t+d m_{t}
$$

Hence, $\left[\Delta_{x}, \Delta_{t}\right] f=0$ implies

$$
\begin{array}{rl}
\Delta_{x} f\left(X_{t}\right) z_{t}=\Delta_{x} & f\left(X_{0}\right)+m_{t} \Rightarrow \int_{0}^{T} \Delta_{x} f\left(X_{t}\right) z_{t} d t=\Delta_{x} f\left(X_{0}\right) T+\int_{0}^{T} m_{t} d t \\
\Rightarrow \Delta_{x} f\left(X_{0}\right) T=\mathbb{E}\left[\int_{0}^{T} \Delta_{x} f\left(X_{t}\right) z_{t} d t\right] \\
\Rightarrow \Delta_{x} f\left(X_{0}\right)=\left\langle\Delta_{x} f(X), \frac{1}{T} \frac{z}{\sigma^{2}(x)}\right\rangle_{\mathcal{H}_{x}^{2}} \\
\Rightarrow \Delta_{x} f\left(X_{0}\right)=\left\langle f\left(X_{t}\right), \mathcal{I}_{x}\left(\frac{1}{T} \frac{z_{t}}{\sigma^{2}(x)}\right)\right\rangle_{\mathcal{M}_{x}^{2}} \\
\Rightarrow \Delta_{x} f\left(X_{0}\right)=\mathbb{E}\left[g\left(X_{T}\right) \frac{1}{T} \int_{0}^{T} \frac{z_{t}}{\sigma\left(x_{t}\right)} d w_{t}\right]
\end{array}
$$

Delta

Theorem

Consider a path-dependent derivative with maturity T and contract $g: \Lambda_{T} \longrightarrow \mathbb{R}$. So, if the price of this derivative satisfy certain smoothness conditions and it is weakly path-dependent, then $\Delta_{x} f\left(X_{t}\right) z_{t}$ is a martingale and the following formula for the Delta is valid:

$$
\Delta_{x} f\left(X_{0}\right)=\mathbb{E}\left[g\left(X_{T}\right) \frac{1}{T} \int_{0}^{T} \frac{z_{t}}{\sigma\left(x_{t}\right)} d w_{t}\right] .
$$

- This is the same formula found by Fournié et al using Malliavin calculus when $g\left(X_{T}\right)=\phi\left(x_{T}\right)$.
- Our proof can be adapted to deal with payoffs $\phi\left(x_{t_{1}}, \ldots, x_{t_{m}}\right)$ and Fournié et al's formula is derived.

Strong Path-Dependence

How would these formulas change if f is strongly path-dependent?

$$
\Delta_{x} f\left(X_{0}\right)=\Delta_{x} f\left(X_{t}\right) z_{t}+\int_{0}^{t}\left[\Delta_{x}, \Delta_{t}\right] f\left(X_{s}\right) z_{s} d s-m_{t}
$$

One can show then

$$
\begin{aligned}
\Delta_{x} f\left(X_{0}\right)= & \mathbb{E}\left[g\left(X_{T}\right) \frac{1}{T} \int_{0}^{T} \frac{z_{t}}{\sigma\left(x_{t}\right)} d w_{t}\right] \\
& +\mathbb{E}\left[\frac{1}{T} \int_{0}^{T} \int_{0}^{t}\left[\Delta_{x}, \Delta_{t}\right] f\left(X_{s}\right) z_{s} d s d t\right]
\end{aligned}
$$

- For the second term, one should study the adjoint and/or an integration by parts for Δ_{t} and Δ_{x} in \mathcal{H}_{x}^{2}.

The Functional Meyer-Tanaka Formula

The Meyer-Tanaka Formula

Classical versions of the Meyer-Tanaka Formula:

$$
\begin{aligned}
& \text { - } f\left(x_{t}\right)=f\left(x_{0}\right)+\int_{0}^{t} f_{x}\left(x_{s}\right) d x_{s}+\int_{\mathbb{R}} L^{x}(t, y) d_{y} f_{x}(y), \\
& \text { - } f\left(t, x_{t}\right)=f\left(0, x_{0}\right)+\int_{0}^{t} f_{t}\left(s, x_{s}\right) d s+\int_{0}^{t} f_{x}\left(s, x_{s}\right) d x_{s} \\
& +\int_{\mathbb{R}} L^{x}(t, y) d_{y} f_{x}(t, y)-\int_{\mathbb{R}} \int_{0}^{t} L^{x}(s, y) d_{s, y} f_{x}(s, y),
\end{aligned}
$$

where $L^{x}(t, y)$ is the local time of the process x at y :

$$
L^{x}(t, y)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{4 \varepsilon} \int_{0}^{t} 1_{[y-\varepsilon, y+\varepsilon]}\left(x_{s}\right) d\langle x\rangle_{s}
$$

Convex Functionals

For a functional $f: \Lambda \longrightarrow \mathbb{R}$, we define $F: \Lambda \times \mathbb{R} \longrightarrow \mathbb{R}$ as

$$
F\left(Y_{t}, h\right)=f\left(Y_{t}^{h}\right)
$$

Definition (Convex Functionals)

We say f is a convex functional if $F\left(Y_{t}, \cdot\right)$ is a convex real function for any $Y_{t} \in \Lambda$.

Example: The running maximum is a simple example of a (non-smooth) convex functional

$$
m\left(Y_{t}\right)=\sup _{0 \leq s \leq t} y_{s}
$$

Mollification of Functionals

Definition (Mollified Functionals)

For a given functional f, we define the sequence of mollified functionals as

$$
F_{n}\left(Y_{t}, h\right)=\int_{\mathbb{R}} \rho_{n}(h-\xi) F\left(Y_{t}, \xi\right) d \xi=\int_{\mathbb{R}} \rho_{n}(\xi) F\left(Y_{t}, h-\xi\right) d \xi .
$$

Remark: The mollifier can be taken as

$$
\rho(z)=c \exp \left\{\frac{1}{(z-1)^{2}-1}\right\} 1_{[0,2]}(z)
$$

where c is chosen in order to have $\int_{\mathbb{R}} \rho(z) d z=1$.

The Functional Meyer-Tanaka Formula

Theorem (Functional Meyer-Tanaka Formula)
Consider a convex functional $f: \Lambda \longrightarrow \mathbb{R}$ satisfying some regularity assumptions. Then

$$
\begin{aligned}
f\left(X_{t}\right) & =f\left(X_{0}\right)+\int_{0}^{t} \Delta_{t} f\left(X_{s}\right) d s+\int_{0}^{t} \Delta_{x}^{-} f\left(X_{s}\right) d x_{s} \\
& +\int_{\mathbb{R}} L^{x}(t, y) d_{y} \partial_{y}^{-} \mathcal{F}\left(X_{t}, y\right)-\int_{0}^{t} \int_{\mathbb{R}} L^{x}(s, y) d_{s, y} \partial_{y}^{-} \mathcal{F}\left(X_{s}, y\right)
\end{aligned}
$$

Yuri F. Saporito (2014) "Functional Meyer-Tanaka Formula", Submitted.

Thank you!

