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[td Formula

Theorem (Ité Formula)
Consider f € C12([0, T] x R). Then

Lof tof
f(t,w:) = £(0,0) —|—/0 a(s, ws)ds —I—/O a(s, ws ) dws+

1 [*O°f
+§ 0 W(s, Ws)dS.

@ Only functions of the current value (current source of randomness).

@ This is a Fundamental Theorem of Calculus for functions with
unbounded variation and finite quadratic variation.

@ The term with the second derivative materializes the bounded
quadratic variation feature.
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Motivation

Various examples in real life show that “often the impact of randomness is
cumulative and depends on the history of the process”:

@ The price of a path-dependent options may depend on the whole
history of the underlying asset, e.g. option on the average (Asian), on
the maximum/minimum (Lookback, Barrier), etc.

@ Blood glucose levels depends on the history of food composition,
portion sizes and timing of meals.

@ The temperature at a certain location depends on the temperature
history and the history of other factors like humidity, ocean currents,
winds, clouds, solar radiation, etc.

@ The credit score of a person depends on payment history, amounts
owed, length of credit history, new credit accounts, etc.

[ Bruno Dupire, “Functional Ité6 Calculus”, (July 17, 2009), Available at
SSRN: http://ssrn.com /abstract=1435551



i ~ \FGV EMAp
Functional 1t6 Calculus - Space of Paths

e A: = {bounded cadlag paths from [0, t] — R}.
@ Space of paths:
A= | A

te[0,T]

@ Upper case - Paths: When X € A belongs to the specific A¢, we
denote it by X;.

» Since the A; are disjoints, this is a consistent notation.
» If X; is fixed, we denote the restriction of X; to [0, s] by Xi.

@ Lower case - Process: X € Ay = xs = X¢(s), s € [0, t].
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Space of Paths

Flat Extension:

Xy, f0<u<t
Xt’St(u)_{ x¢, ift<u<s.

Bump:
Xy , fo<u<t

h _
Xt(u)_{ xt+h, ifu=t
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Topology

For any X;, Ys € A, where we assume without loss of generality that s > t,
define

d/\(Xl’7 Ys) = ||Xt,s—t - YsHoo +s—t.
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Functional Derivatives

Time Derivative:
f(Xt,At) - f(Xt)

Ad(Xe)= i
f(Xt) Atlg'm At
Space Derivative:
f(Xh) — f(X
Ay f(X:) = lim M
h—0 h
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Smooth Functional

Definition (A-Continuity)

As usual, a functional f : A — R is said A-continuous if it continuous
with respect to the metric dj.

Whenever it is defined, we will write Ay f = Ay (Axf).
Definition (Smooth Functional)

We will call a functional f : A — R smooth if it is A-continuous and it
has A-continuous functional derivatives A:f, Axf and A, f.
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Examples

F(Xe) = h(t, x;).

@ f is A-continuous if and only if h is continuous.

@ Time Derivative:

h(t + Ata Xt,At(t + At)) - h(ta Xt)

Acf (Xe) = A!fiﬂ;lo*' At -
- h(t"‘At,Xt) - h(t,Xt) o
© At—0* At -
Oh
== E(t,Xt).

@ Space Derivative:

. h(t,xt + h) — h(t, x Oh
Axf(xt)zmo( : /)7 ( t):ax(t,xt).




Examples

t
f(Xt):/ xydu.
0

@ Time Derivative:

At
. f0t+ Xi At(u fo xydu
Adf(Xe) = A|t|~n>q0+ At
t+At
i e el
At—0+ At t
@ Space Derivative:
t t
ALF(X) = lim Xe(u)du = Jo xudu _
AT R0 '
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Functional 1t6 Formula

Theorem

Let x be a semi-martingale and f be a smooth functional. Then, for any
t € [0, T], we have

F(X:) = f(Xo) + /0 CAF(Xe)ds + /0 T AL F(Xs)ds

+%/0 Ay F(Xs)d(x)s.
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Pricing PPDE

@ Local vol model: dx; = rx;dt + o(X¢)dw;.

@ Derivative: maturity T and payoff functional g : A+ — R.

@ The no-arbitrage price of this derivative is given by
f(ve)=e T IE[g(X7) | Vi,

for any path Y; € A

\7FGV EMAp
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Pricing PPDE

Theorem (Pricing PPDE)

If the f is a smooth functional, then, for any Y; in the topological support
of the process x,

BF(Ye) + 502 (YD (Ye) + rlyelbuf (Vo) = F(¥e)) = 0,

with final condition f(YT1) = g(Y7). Equations of this type are called
Path-dependent PDE, or PPDE.

Under suitable assumptions on o, the PPDE above will hold for any
continuous path.
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Adjoint of A,

[4 R. Cont & D.-A. Fournié (2013) “Functional It6 Calculus and
Stochastic Integral Representation of Martingales”, The Annals of
Probability 41 (1), 109-133.

From now on, we consider the local volatility model dx; = o(x;)dw; (so x
is a martingale) and define

H2 = {f:A—>R; E {/sz(Xt)d<x)t} <+oo},

0
M)% ={f:AN—=R; f(X;)is also a martingale},

(.6 = | [ ' X0 )]

(f,g) a2 = E[f(X7)g(X7)]
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Adjoint of A,
We write ;
LN = [ FOx)d

for the classical It integral of the process (f(X;))cpo, 7] with respect to
the martingale (xt)¢co,7]-

First notice we can write |t6 Isometry as

(f,8)12 = (T«(f), Zx(8)) r2-
We then have the following result:
Proposition

The adjoint of Ay : M2 — H2 is the It6 integral:

(Dxf,8)32 = (F,T(8)) Az
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Path-dependence and the Computation of Greeks
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Introduction

[§ Samy Jazaerli and Yuri F. Saporito, “Functional It6 Calculus,
Path-Dependence and the Computation of Greeks”, Submitted (2013)
Available at arXiv: http://arxiv.org/abs/1311.3881

e We will show that for a class of (path-dependent) payoffs, there exists
a “weight” 7 such

Greek = E[ payoff x m].

@ In this talk we will show the details only for the Delta (the sensitivity
to the initial value of the asset).

@ Similar computations can be performed for the Gamma and Vega.
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Malliavin Calculus Approach

@ An application of Malliavin Calculus to this problem can be found in
the important paper:

[3 E. Fournié et al, “Applications of Malliavin calculus to Monte

Carlo methods in finance”, Finance and Stochastics 5 (1999)
201-236.

@ Suppose the underlying asset is described by the local volatility model
dxy = o(x¢)dws.
@ Forfixed 0 < t; < --- < t,, = T, consider the price

u(x) = E[é(xty, - - -, Xe,,) | X0 = X].
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Malliavin Calculus Approach

@ Under mild conditions,

J(x) =E [¢(xt1, Xt /OT 202 1

o(xt)

XOZX],

where y is the tangent process dz; = o/(x¢)zzdw; and

aerm:{aeL2([o,T]); /Otia(t)dtzl, Vi:1,...,m}.
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Malliavin Calculus Approach

@ Regarding the Malliavin Calculus, the payoffs of the form
&(Xt,, - - -, Xt,,) Seem arbitrary (but it is what is used in practice).

@ Similar formulas for other path-dependent derivatives can be found

@ The set I, degenerates if t; = 0.

EMAp
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Goals

@ Introduce a measure of path-dependence for functionals.

@ Understand the assumption that the payoff depends only on
Xty ooy Xt

m"

@ Derive these weights using the framework of functional 1t6 calculus.
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Delta

@ The Delta of a derivative contract is the sensitivity of its price with
respect to the current value of the underlying asset: A,f(Xp).

o Define the tangent process: dz; = o’(xt)zrdwy, with zp = 1.
o Applying A, to the functional PDE gives us
1
A f(Xt) + 0(xe)o" (xe) Do F (Xe) + 502(xt)AXXXf(xt) =0,

where A = A

@ Hence

d(Dxf(Xe)ze) = (DxeF(Xe) — Aecf (Xe))zedt + dm.
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Lie Bracket

Definition (Lie Bracket)

The Lie bracket of the operators A; and A, will play a fundamental role
in what follows. It is defined as

[Ax, At]f( Yt) - Atxf( Yt) - Axtf( Yt)v
where A = Ay A,
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Weak Path-Dependence

Definition (Weak Path-Dependence)
A functional f : A — R is called weakly path-dependent if

[Ax, A¢]f = 0.
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Lie Bracket

t
f(Xe) = / xsds is not weakly path-dependent: [Ay, A¢]f = 1.
0

f(Xt) = h(t, x¢) is weakly path-dependent.

t s
f(Xe) = /0 /0 x,duds is weakly path-dependent.

o f(X¢) = (x): is weakly path-dependent at continuous paths.

f(Xt) = E[p(xty, .-, Xt,,) | X¢] has zero Lie bracket but for ty, ..., tm.
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Delta

Remember that
d(AXf(Xt)Zt) = _[AX7 At]f(Xt)tht + dmt.
Hence, [Ax, A¢]f = 0 implies

T T
AF(Xe)ze = DF(Xo) + me = / A F(Xe)zedt = AF(Xo) T + / medt
0 0

= AF(X)T =E [/OT Axf(Xt)ztdt]

\'
q

= D f(Xo) = <AXf(X)7 7 2Z(X)>H§

= A (Xp) = <f(Xf)’IX <;'U2Z(tx)>>/v1§

= Axf(Xo) =E [g(XT)l/OT - th}
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Delta

Theorem

Consider a path-dependent derivative with maturity T and contract

g : Nt —> R. So, if the price of this derivative satisfy certain smoothness
conditions and it is weakly path-dependent, then A.f(X:)z: is a
martingale and the following formula for the Delta is valid:

Af(Xo) =E [g(xr); /0 ' U(Z;t)dwt} -

@ This is the same formula found by Fournié et al using Malliavin
calculus when g(X7) = ¢(x71).

@ Our proof can be adapted to deal with payoffs ¢(x¢,...,xt,) and
Fournié et al's formula is derived.
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Strong Path-Dependence

How would these formulas change if f is strongly path-dependent?
t
A f(Xo) = Axf(Xt)ze + / [Ax, A¢]f(Xs)zsds — my.
0

One can show then

Zt

o(xt)

A F(X0) =E [g(xr); / ' dwt]

+E [; /O ' /0 t[AX,At]f(Xs)zsdsdt] .

@ For the second term, one should study the adjoint and/or an
integration by parts for A; and A, in H2.
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The Functional Meyer-Tanaka Formula

29 /34



The Meyer-Tanaka Formula

Classical versions of the Meyer-Tanaka Formula:

o f(x)= f(x0)+/0 fX(xs)dxs+/RLX(t,y)dyfx(y),

o f(t,xt)="F(0,x)+ /t f (s, xs)ds—i-/t fi (s, xs ) dxs

/Lx(tydy (t,y) — // *(s,y)ds (s, ),

where L*(t,y) is the local time of the process x at y:

t

. 1
LX(t,y) = lim — l[y_a7y+5](xs)d<x)s.

\7FGV EMAp

30/34



i N\TFGV EMAp
Convex Functionals

For a functional f : A — R, we define F: A x R — R as

F(Y:, h) = f(YD.

Definition (Convex Functionals)

We say f is a convex functional if F(Yt,-) is a convex real function for any
Y: €A

Example: The running maximum is a simple example of a (non-smooth)
convex functional

m(Y:) = Ozuz Vs-
<s<t
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Mollification of Functionals

Definition (Mollified Functionals)

For a given functional f, we define the sequence of mollified functionals as

Fo(Ye, ) = /R ol — E)F(Ye, €)de = /IR Po(€)F(Ye, h— £)de.

Remark: The mollifier can be taken as

p(z) = ¢ exp {(2_11)2_1} Lo,21(2),

where c is chosen in order to have [, p(z)dz = 1.
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The Functional Meyer-Tanaka Formula

Theorem (Functional Meyer-Tanaka Formula)

Consider a convex functional f : A — R satisfying some regularity
assumptions. Then

F(X:) = F(Xo) + /0 T AF(Xe)ds + /0 CASF(Xe)ds

t
+ /R LX(t, y)dy By F(Xery) — /0 /R LX(5,Y)day 05 F(Xer ).

[d Yuri F. Saporito (2014) “Functional Meyer-Tanaka Formula”,
Submitted.
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Thank you!
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