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OUTLINE

Motivation
I What is time inconsistency? Why do we have it?

Methodology
I Game-theoretic approach

Application
I Probability Distortion

Extension
I Non-exponential Discounting
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CLASSICAL OPTIMAL STOPPING

Consider
I a continuous Markovian process X : [0,∞)× Ω 7→ Rd.
I a payoff function u : Rd 7→ R+.

Optimal Stopping

sup
τ∈T

Ex[u(Xτ )] = Ex[u(Xτ̃x
)]

:::::::::

I T : set of stopping times.

I Does τ̃x ∈ T exist?
I Dynamic programming (free boundary problems)
I martingale method (Snell envelope)
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PROBABILITY DISTORTION

I Standard formulation:

Ex[u(Xτ )] =

∫ ∞
0

P[u(Xx
τ ) > y]dy

I Probability distortion:∫ ∞
0

w
(
P[u(Xx

τ ) > y]

)
dy

I w : [0, 1] 7→ [0, 1] is called a probability weighting function
I w is continuous, increasing;
I w(0) = 0 and w(1) = 1.
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Optimal Stopping

sup
τ∈T

∫ ∞
0

w
(
Px[u(Xτ ) > y]

)
dy

=

∫ ∞
0

w
(
Px[u(Xτ̃x) > y]

)
dy

Does τ̃x ∈ T exist?
I X is Rd-valued: ???
I X is R-valued:

I Xu & Zhou (2013) characterized τ̃x ∈ T using
distribution/quantile formulation.
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I Problem Solved. Feeling Good?

0

τ̃x τ̃x(ω)

I The Reality:

0 1 2

τ̃x ?????τ̃X1 τ̃X2

I Time Inconsistency:
I τ̃x, τ̃X1 , τ̃X2 may all be different.
I Is it reasonable to apply τ̃x at time t?
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EXAMPLE

I Geometric BM: dXt = Xt(µdt + σdBt)

I Power utility: u(x) = x1−γ , γ ∈ (0, 1)

I Prelec (1998)’s function: w(p) = exp {−λ(− log p)α} ,
where λ > 0 and α > 1 (S-shaped).

Under the condition

µ

σ2 ∈
(
γ

2
,

1
2

)
,

I optimal stopping time:

τ̃x = inf

{
t ≥ 0 : Xx

t ≥ exp

(
σ2

σ2 − 2µ

(
1− γ
αλ

) 1
α−1
)

x

}
> 0.

I time inconsistency =⇒ procrastination (“never stop”!!)
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General Optimal Stopping

sup
τ∈T

J(x; τ),

Assumption: J : Rd × T 7→ R satisfies
1) J(x; 0) = u(x);
2) J(x; τn)→ J(x; τ) if τn ↓ τ a.s.;
3) With D ∈ B(Rd) and TD the first hitting time of D,

x 7→ J(x; TD) is Borel measurable.

I Expected payoff: J(x; τ) := Ex[u(Xτ )].

I Probability Distortion:

J(x; τ) :=

∫ ∞
0

w
(
Px[u(Xτ ) > y]

)
dy.
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STOPPING POLICIES

Definition
A Borel function τ : Rd 7→ {0, 1} is called a stopping policy.

τ(x) = 0 =⇒ stop
τ(x) = 1 =⇒ continue

0 t

yourself today yourself at time t
τ(x) = 0 or 1 τ(Xx

t ) = 0 or 1

I When eventually will we stop?

Lτ(x) := inf {t ≥ 0 : τ(Xx
t ) = 0} ∈ T
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A naive agent simply follows τ̃x over time:

0 t

yourself today yourself at time t
τ̃x = 0 or > 0 τ̃Xx

t
= 0 or > 0

I Naive stopping policy:

τ̃(x) :=

{
0, if τ̃x = 0,
1, if τ̃x > 0.

I What if τ̃x does not exist?

τ̃(x) :=

{
0, if τ̃x = 0,
1, if τ̃x > 0 or τ̃x does not exist.
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GAME-THEORETIC APPROACH

I Given a stopping policy τ : Rd 7→ {0, 1},
0 t

yourself today yourself at time t
(Player 0) (Player t)

τ(x) = 0 or 1 τ(Xx
t ) = 0 or 1

I Game-theoretic thinking of Player 0:
Given that each Player t will follow τ ,

I what is the best stopping strategy at time 0?
I can it just be τ(x)?
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BEST STOPPING STRATEGY
Player 0 has only two possible actions: to stop or to continue.

I If she stops, gets u(x) right away.
I If she continues, she will eventually stop at the moment

L∗τ(x) := inf {t > 0 : τ(Xx
t ) = 0}

0

τcontinue

Her expected gain is therefore J (x;L∗τ(x)) .

L∗τ(x)0

τcontinue

Lτ(x)0

ττ(x)
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The best stopping strategy for Player 0:

I. u(x) > J (x;L∗τ(x))⇒ stop at time 0

II. u(x) < J (x;L∗τ(x))⇒ continue at time 0

III. u(x) = J (x;L∗τ(x))⇒
I indifferent between to stop and to continue at time 0.
I no incentive to deviate from τ(x)
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I Summarize the best stopping strategy for Player 0 as

Θτ(x) :=


0, if x ∈ Sτ ;

1, if x ∈ Cτ ;

τ(x), if x ∈ Iτ ;

where

Sτ := {x : u(x) > J (x;L∗τ(x))},
Iτ := {x : u(x) = J (x;L∗τ(x))},

Cτ := {x : u(x) < J (x;L∗τ(x))}.

0

τΘτ(x)

I In general, Θτ(x) 6= τ(x).
I Player 0 wants to follow Θτ(x), instead of τ(x).
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IMPROVING VIA ITERATION

1. At first, one follows τ : Rd 7→ {0, 1}.

By game-theoretic
thinking,

0

τΘτ(x)
=⇒ switch from τ to Θτ

2. Now, one follows Θτ . By game-theoretic thinking,

0

ΘτΘ2τ(x)
=⇒ switch from Θτ to Θ2τ

3. Continue this procedure until we reach

τ∗(x) := lim
n→∞

Θnτ(x)

Expect: Θτ∗(x) = τ∗(x), i.e. cannot improve anymore.
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Θnτ(x)

Expect: Θτ∗(x) = τ∗(x), i.e. cannot improve anymore.
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EQUILIBRIUM POLICIES

Definition
A stopping policy τ is called an equilibrium policy if

Θτ(x) = τ(x), ∀x ∈ Rd.

I Trivial Equilibrium: consider τ(x) := 0 for all x.

L∗τ(x) = inf{t > 0 : τ(Xx
t ) = 0} = 0

=⇒ J(x;L∗τ(x)) = J(x; 0) = u(x).

This implies Cτ = Rd, and thus Θτ(x) = τ(x), ∀x.
I In general, given a stopping policy τ , carry out iteration:

τ −→ Θτ −→ Θ2τ −→ · · · −→ “equilibrium”??

I To show: (i) τ∗ := lim
n→∞

Θnτ converges (ii) Θτ∗ = τ∗.
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ONE-DIMENSIONAL CASE
Consider a 1-D diffusion

dXt = b(Xt)dt + a(Xt)dBt,

where a(·) > 0.

Define θ(·) := b(·)/a(·), and introduce

Zt := exp
(
−1

2

∫ t

0
θ2(Xs)ds−

∫ t

0
θ(Xs)dBs

)
.

Main Result
Suppose Z is a martingale. Then, for any stopping policy τ ,

τ∗(x) := lim
n→∞

Θnτ(x) converges, ∀x ∈ R.

Moreover, τ∗ is an equilibrium policy, i.e.

Θτ∗(x) = τ∗(x), ∀x ∈ R.
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LITERATURE

Strotz (1955): 3 different reactions to time inconsistency

I A naive agent follows classical optimal stopping.
I A pre-committed agent forces all his future selves to

follow the initial optimal stopping time τ̃(t, x).

I A sophisticated agent
1. considers the behavior of future selves;
2. aims to find a stopping strategy that

once being enforced over time,
no future self would want to deviate from it.

Question: How to formulate sophisticated strategies
in continuous time ?

Unclear in the literature...
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LITERATURE

I Ekeland & Lazrak (2006): Subgame perfect Nash
equilibriums emerge as the proper formulation for
sophisticated strategies, for control problems.

sophisticated strategies ⇐⇒ equilibrium strategies

I Recent studies: Ekeland & Pirvu (2008), Ekeland, Mbodji,
& Pirvu (2012), Björk, Murgoci, & Zhou (2014), Dong &
Sircar (2014), Björk & Murgoci (2014), Yong (2012),...

I Extending the equilibrium idea to stopping problems:

difficult, unresolved.

Xu & Zhou (2013), Barberis (2002), Grenadier & Wang
(2007).
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FROM “NAIVE” TO “SOPHOSTICATED”

τ̃∗ = lim
n→∞

Θnτ̃

reveals the connection between “naive” and “sophisticated”:

· · · · · ·τ̃∗ τ̃Θτ̃Θ2τ̃Θ3τ̃

naive

irrational

sophisticated

fully rational boundedly rational

I Bounded Rationality proposed by H. Simon (1982).
I This connection is new in the literature.
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PROBABILITY DISTORTION
Follow the setup in Xu & Zhou (2013):

I Price process:

dPt = Pt(µdt + σdBt), P0 = p ∈ R+.

I Objective function:∫ ∞
0

w
(
Pp[U(Pτ ) > y]

)
dy.

I Utility (Payoff) function U : R+ 7→ R+:

nondecreasing, continuous, U(0) = 0.

I Prob. weighting function w : [0, 1] 7→ [0, 1]:

increasing, continuous, w(0) = 0,w(1) = 1.
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Define
β := 1− 2

µ

σ2 .

I β ≤ 0
I The asset is sufficiently good.

=⇒ hold the asset forever, or up to a large threshold.
I No time inconsistency!
I The naive policy τ̃ is already an equilibrium.

I β > 0
I The asset is just “average”, or even “bad”.
I Time inconsistency arises!
I The naive policy τ̃ may not be an equilibrium.
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TRANSFORMATION

For the case β > 0,

I Define Xt := Pβt

I dXt = βσXtdBt, with X0 = x := pβ > 0.
I X is a martingale, and Xt → 0 as t→∞.

I Define u(x) := U(x1/β)
I u is nondecreasing, and u(0) = 0
I

J(x; τ) =

∫ ∞
0

w (Px[u(Xτ ) > y]) dy.
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CASE STUDY: CONCAVE u

For a completely rational agent,
I w(p) = p (no prob. distortion), i.e. J(x; τ) = E[u(Xx

τ )].

I u(Xx
t ) is a supermartingale =⇒ τ̃x = 0.

For an optimistic agent,
I w is concave
I ???

For an partially optimistic agent,
I w is reverse S-shaped
I ???
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EXAMPLE (CONCAVE u, CONCAVE w)

Consider
u(x) =

1
γ

xγ , w(x) = xα,

where 0 < γ < α < 1.

I optimal stopping time:

τ̃x = inf
{

t ≥ 0 : Xx
t ≤

α− γ
1− γ

max
0≤s≤t

Xx
s

}
.

I Observe: τ̃x > 0 for all x =⇒ τ̃(x) = 1 for all x.
(time inconsistency =⇒ procrastination)

I Want to find
τ̃∗ = lim

n→∞
Θnτ̃ .



INTRODUCTION METHODOLOGY PROBABILITY DISTORTION GENERAL DISCOUNTING Extensions

EXAMPLE (CONCAVE u, CONCAVE w)

Consider
u(x) =

1
γ

xγ , w(x) = xα,

where 0 < γ < α < 1.
I optimal stopping time:

τ̃x = inf
{

t ≥ 0 : Xx
t ≤

α− γ
1− γ

max
0≤s≤t

Xx
s

}
.

I Observe: τ̃x > 0 for all x =⇒ τ̃(x) = 1 for all x.
(time inconsistency =⇒ procrastination)

I Want to find
τ̃∗ = lim

n→∞
Θnτ̃ .



INTRODUCTION METHODOLOGY PROBABILITY DISTORTION GENERAL DISCOUNTING Extensions

EXAMPLE (CONCAVE u, CONCAVE w)

Consider
u(x) =

1
γ

xγ , w(x) = xα,

where 0 < γ < α < 1.
I optimal stopping time:

τ̃x = inf
{

t ≥ 0 : Xx
t ≤

α− γ
1− γ

max
0≤s≤t

Xx
s

}
.

I Observe: τ̃x > 0 for all x =⇒ τ̃(x) = 1 for all x.
(time inconsistency =⇒ procrastination)

I Want to find
τ̃∗ = lim

n→∞
Θnτ̃ .



INTRODUCTION METHODOLOGY PROBABILITY DISTORTION GENERAL DISCOUNTING Extensions

EXAMPLE (CONCAVE u, CONCAVE w)

Consider
u(x) =

1
γ

xγ , w(x) = xα,

where 0 < γ < α < 1.
I optimal stopping time:

τ̃x = inf
{

t ≥ 0 : Xx
t ≤

α− γ
1− γ

max
0≤s≤t

Xx
s

}
.

I Observe: τ̃x > 0 for all x =⇒ τ̃(x) = 1 for all x.
(time inconsistency =⇒ procrastination)

I Want to find
τ̃∗ = lim

n→∞
Θnτ̃ .



INTRODUCTION METHODOLOGY PROBABILITY DISTORTION GENERAL DISCOUNTING Extensions

EXAMPLE (CONCAVE u, CONCAVE w)

I First iteration Θτ̃ :

J(x;L∗τ̃(x)) = J(x;∞) =

∫ ∞
0

w (P[u(Xx
∞) > y]) dy

=

∫ ∞
0

w (P[0 > y]) = 0 < u(x), ∀x ∈ R+.

=⇒ Sτ̃ = R+ =⇒ Θτ̃(x) = 0 for all x.

I Conclude:

τ̃∗(x) = lim
n→∞

Θnτ̃(x) = Θτ̃(x) ≡ 0.

I This coincides with completely rational behavior!
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Proposition
Suppose u is strictly concave, and w satisfies either (i) or (ii):

(i) w is concave;
(ii) w is reverse S-shaped and w′(0+) =∞.

Then,

τ̃(x) = 1, ∀x ∈ R+

τ̃∗(x) = Θτ̃(x) = 0, ∀x ∈ R+.

Implications:
A sophisticated agent may behave as a completely rational one.
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REVERSE S-SHAPED w

Three main forms:
I Tversky & Kahneman (1992):

w(x) =
xγ

(xγ + (1− x)γ)1/γ , 0.279... ≤ γ < 1

I Goldstein & Einhorn (1987):

w(x) =
αxγ

αxγ + (1− x)γ
, α > 0, γ ∈ (0, 1).

I Prelec (1998):

w(x) = exp {−γ(− log x)α} , α > 0, γ > 0.

Common property: w′(0+) =∞.



INTRODUCTION METHODOLOGY PROBABILITY DISTORTION GENERAL DISCOUNTING Extensions

REVERSE S-SHAPED w

Three main forms:
I Tversky & Kahneman (1992):

w(x) =
xγ

(xγ + (1− x)γ)1/γ , 0.279... ≤ γ < 1

I Goldstein & Einhorn (1987):

w(x) =
αxγ

αxγ + (1− x)γ
, α > 0, γ ∈ (0, 1).

I Prelec (1998):

w(x) = exp {−γ(− log x)α} , α > 0, γ > 0.

Common property: w′(0+) =∞.



INTRODUCTION METHODOLOGY PROBABILITY DISTORTION GENERAL DISCOUNTING Extensions

NON-EXPONENTIAL DISCOUNTING

Optimal Stopping

sup
τ∈T

Et,x[δ(τ − t)u(Xτ )]

I δ : R+ 7→ [0, 1] is decreasing with δ(0) = 1

I If δ(t, s) := e−α(s−t), time-consistent
I If δ(t, s) is of non-exponential form, time-inconsistent
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Why not stay with exponential discounting?
I Payoff may not be monetary (utility, happiness, health,...).

I Empirical: people don’t discount money exponentially.
I People admit “decreasing impatience”

(Laibson (1997), O’Donoghue & Rabin (1999))

$100 $110 $100 $110

0 1 100 101

100
δ(1)200 > 1 δ(100)100

δ(101)200 < 1

I If δ(s− t) = e−ρ(s−t),

100
δ(1)200

=
δ(100)100
δ(101)200

=
eρ

2
is constant.

⇒ Does not capture “decreasing impatience”.



INTRODUCTION METHODOLOGY PROBABILITY DISTORTION GENERAL DISCOUNTING Extensions

Why not stay with exponential discounting?
I Payoff may not be monetary (utility, happiness, health,...).
I Empirical: people don’t discount money exponentially.

I People admit “decreasing impatience”
(Laibson (1997), O’Donoghue & Rabin (1999))

$100 $110 $100 $110

0 1 100 101

100
δ(1)200 > 1 δ(100)100

δ(101)200 < 1

I If δ(s− t) = e−ρ(s−t),

100
δ(1)200

=
δ(100)100
δ(101)200

=
eρ

2
is constant.

⇒ Does not capture “decreasing impatience”.



INTRODUCTION METHODOLOGY PROBABILITY DISTORTION GENERAL DISCOUNTING Extensions

Why not stay with exponential discounting?
I Payoff may not be monetary (utility, happiness, health,...).
I Empirical: people don’t discount money exponentially.

I People admit “decreasing impatience”
(Laibson (1997), O’Donoghue & Rabin (1999))

$100 $110 $100 $110

0 1 100 101

100
δ(1)200 > 1 δ(100)100

δ(101)200 < 1

I If δ(s− t) = e−ρ(s−t),

100
δ(1)200

=
δ(100)100
δ(101)200

=
eρ

2
is constant.

⇒ Does not capture “decreasing impatience”.



INTRODUCTION METHODOLOGY PROBABILITY DISTORTION GENERAL DISCOUNTING Extensions

Why not stay with exponential discounting?
I Payoff may not be monetary (utility, happiness, health,...).
I Empirical: people don’t discount money exponentially.

I People admit “decreasing impatience”
(Laibson (1997), O’Donoghue & Rabin (1999))

$100 $110 $100 $110

0 1 100 101

100
δ(1)200 > 1 δ(100)100

δ(101)200 < 1

I If δ(s− t) = e−ρ(s−t),

100
δ(1)200

=
δ(100)100
δ(101)200

=
eρ

2
is constant.

⇒ Does not capture “decreasing impatience”.



INTRODUCTION METHODOLOGY PROBABILITY DISTORTION GENERAL DISCOUNTING Extensions

I A Borel map τ : R+ × Rd 7→ {0, 1} is a stopping policy.

τ(t, x) = 0 =⇒ stop; τ(t, x) = 1 =⇒ continue.

I If future selves will follow τ , the best stopping strategy for
Player t is

Θτ(t, x) :=


0, if x ∈ Sτ ;

1, if x ∈ Cτ ;

τ(t, x), if x ∈ Iτ ;

where
Sτ := {(t, x) : u(x) > Et,x

[
δ(L∗τ(t, x)− t)u

(
XL∗τ(t,x)

)]
},

Iτ := {(t, x) : u(x) = Et,x
[
δ(L∗τ(t, x)− t)u

(
XL∗τ(t,x)

)]
},

Cτ := {(t, x) : u(x) < Et,x
[
δ(L∗τ(t, x)− t)u

(
XL∗τ(t,x)

)]
}.

t

τΘτ(t, x)
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EQUILIBRIUM POLICIES

Definition
A stopping policy τ is called an equilibrium policy if

Θτ(t, x) = τ(t, x), ∀(t, x) ∈ [0,∞)× Rd.

I Trivial Equilibrium: consider τ(t, x) := t for all (t, x).

L∗τ(t, x) = inf{s > t : τ(s,Xx
s ) = 0} = 0

=⇒ Et,x[δ(L∗τ(t, x)− t)u(XL∗τ(t,x))] = u(x).

=⇒ Cτ = [0,∞)× Rd, and thus Θτ(t, x) = τ(t, x), ∀(t, x).
I In general, given a stopping policy τ , carry out iteration:

τ −→ Θτ −→ Θ2τ −→ · · · −→ “equilibrium”??

I To show: (i) τ∗ := lim
n→∞

Θnτ converges (ii) Θτ∗ = τ∗.
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DECREASING IMPATIENCE

I Assumption: the discount function δ : R+ 7→ [0, 1] satisfies

δ(t)δ(s) ≤ δ(t + s) ∀ t, s ≥ 0. (1)

Definition
A discount function δ induces Decreasing Impatience if,

for any s ≥ 0, δ(t+s)
δ(t) is increasing in t.

0 s

δ(0+s)
δ(0)

3 3 + s
δ(3+s)
δ(3)

6 6 + s
δ(6+s)
δ(6)

DI =⇒ δ(t+s)
δ(t) ≥

δ(0+s)
δ(0) = δ(s) =⇒ δ(t)δ(s) ≤ δ(t + s).

I Once we consider DI, (1) is automatically satisfied.
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MAIN RESULT

Lemma
Assume (1). Let τ be a stopping policy. Then,

if Θτ(t, x) ≤ τ(t, x) a.s. ∀(t, x) , (2)

then Θn+1τ(t, x) ≤ Θnτ(t, x) a.s. ∀(t, x) and n.

Theorem

Assume (1) and (2). Then, for any (t, x),

τ∗(t, x) := ↓ lim
n→∞

Θnτ(t, x) converges.

Moreover, τ∗ is an equilibrium policy, i.e.

Θτ∗(t, x) = τ∗(t, x) ∀(t, x).
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Recall the naive stopping policy τ̃ .

I It can be shown that

Θτ̃(t, x) ≤ τ̃(t, x) a.s. for all (t, x).

I Hence,
τ̃∗(t, x) := ↓ lim

n→∞
Θnτ̃(t, x)

is an equilibrium policy.
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EXAMPLE (SMOKING CESSATION)

I Smokers care most about:
I long-term serious health problems
I immediate pain from quitting smoking

I Our Model:
I A smoker has a fixed lifetime T.
I Deterministic cost process

Xt,x
s := xe

1
2 (s−t), s ∈ [t,T]

I Smoker can either
I 1. quit at s < T (costs Xs) 2. die peacefully at T (no cost)
I 1. never quit (no cost) 2. die painfully at T (costs XT)

I Hyperbolic discounting:

δ(s) =
1

1 + s
∀s ≥ 0.
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I Classical Theory: For each t ∈ [0,T],

min
s∈[t,T]

δ(s− t)Xt,x
s = min

s∈[t,T]

xe
1
2 (s−t)

1 + (s− t)
.

I By Calculus, the optimal stopping time is

τ̃(t, x) =

{
t + 1 if t < T − 1,
T if t ≥ T − 1.

I Observe that

Lτ̃(t, x) := inf {s ≥ t : τ̃(s,Xs) = s} ∧ T = T,
L∗τ̃(t, x) := inf {s > t : τ̃(s,Xs) = s} ∧ T = T.

I time inconsistency =⇒ procrastination
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I Our Theory: Apply equilibrium policy τ0 := lim
n→∞

Θnτ̃ .

I First iteration:
Θτ̃(t, x) := t 1Sτ̃

(t, x) + Lτ̃(t, x)1Iτ̃ (t, x) + L∗τ̃(t, x)1Cτ̃
(t, x),

Sτ̃ := {(t, x) : x < δ(L∗τ̃(t, x)− t)XL∗τ̃(t,x)},
Iτ̃ := {(t, x) : x = δ(L∗τ̃(t, x)− t)XL∗τ̃(t,x)},

Cτ̃ := {(t, x) : x > δ(L∗τ̃(t, x)− t)XL∗τ̃(t,x)}.

I Compare x with

δ(L∗τ̃(t, x)− t)Xt,x
L∗τ̃(t,x) =

Xt,x
T

1 + (T − t)
= x · e

1
2 (T−t)

1 + (T − t)

I Since e
1
2 s = 1 + s at s = 0 and s∗ ≈ 2.513,

Sτ̃ = {(t, x) : t < T − s∗},
Cτ̃ = {(t, x) : t ∈ (T − s∗,T)},
Iτ̃ = {(t, x) : t = T − s∗ or T}.
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Cτ̃ := {(t, x) : x > δ(L∗τ̃(t, x)− t)XL∗τ̃(t,x)}.

I Compare x with

δ(L∗τ̃(t, x)− t)Xt,x
L∗τ̃(t,x) =

Xt,x
T

1 + (T − t)
= x · e

1
2 (T−t)

1 + (T − t)

I Since e
1
2 s = 1 + s at s = 0 and s∗ ≈ 2.513,

Sτ̃ = {(t, x) : t < T − s∗},
Cτ̃ = {(t, x) : t ∈ (T − s∗,T)},
Iτ̃ = {(t, x) : t = T − s∗ or T}.
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I Conclude:

Θτ̃(t, x) =

{
t if t < T − s∗,
T if t ≥ T − s∗.

This is already an equilibrium, i.e. Θ2τ̃ = Θτ̃ .

I Thus,

τ0(t, x) := lim
n→∞

Θnτ̃(t, x) =

{
t if t < T − s∗,
T if t ≥ T − s∗.

.

I τ0 says “Stop Smoking Immediately!!”
(unless you’re too old...)
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EXAMPLE (BES(1))
I Xt : one-dimensional Brownian motion
I Hyperbolic discount function

δ(s) =
1

1 + s
.

I payoff function g(x) = |x|.
I Classical optimal stopping time

τ̃(t, x) = inf
{

s ≥ t : |Xt,x
s | ≥

√
1 + (s− t)

}
.

I Find an equilibrium policy:

τ0(t, x) := lim
n→∞

Θnτ̃(t, x) = Θ3τ̃(t, x) = inf{s ≥ t : |Xt,x
s | ≥ x∗},

where x∗ solves∫∞
0 e−s cosh(x

√
2s) sech(

√
2s)ds = x =⇒ x∗ ≈ 0.922.
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We can characterize the whole set E of equilibrium policies.
I For all a ≥ 0, define τa by

τa(t, x) := inf{s ≥ t : |Xt,x
s | ≥ a}, ∀(t, x).

I E = {τa : a ∈ [0, a∗]}, where a∗ solves

a
∫∞

0 e−s
√

2s tanh(a
√

2s)ds = 1 =⇒ a∗ ≈ 0.946.

|x|

0 t

a∗ = 0.946
x∗ = 0.922
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SELECTING AN EQUILIBRIUM

Question: Which equilibrium to use?

I Optimal “time-consistent” stopping:

sup
τ∈E

J(x;Lτ(x)).

Difficult to solve...
I Martingale method & dynamic programming break down!
I Know too little about E ...

I Pareto efficiency:
How to formulate this under current setting?
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THANK YOU!!
Preprint available @ arXiv:1502.03998

“Time-consistent stopping under decreasing impatience”
(H. and Nguyen-Huu)

First draft in preparation
“Time-consistent stopping under probability distortion”

(H., Nguyen-Huu, and Zhou)
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