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Motivation and contribution

Major considerations

É A study of optimal consumption-investment problems ([Merton, 1969],
[Merton, 1971]) under incomplete preferences over multiple goods
that fluctuate in continuous time

É Significant relaxation of completeness axiom – conflicts in pairwise
comparison of consumption bundles; analogous to different
currency-valued assets: [Campi and Owen, 2011], [Hamel and Wang,
2017], [Rudloff and Ulus, 2020]

É Mathematical nature: Extension of multi-criteria optimization (or set
optimization) into infinite stochastic dimensions

É Expectations: A full characterization of optimal policies and how they
reshape under categorization of goods, dynamic ranges of asset prices
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Motivation and contribution

Incomplete preferences: Imprecise beliefs vs imprecise tastes

É Representation of incomplete preferences by multifunctions: [Aumann,
1962], [Ok, 2002], [Dubra et al., 2004], [Evren and Ok, 2011], [Evren,
2014]

É Multi-utility proposed for incomplete preferences from imprecise tastes
– distinguishable from beliefs (Knightian uncertainty) (e.g., [Bewley,
2002], [Rigotti and Shannon, 2005], [Galaabaatar and Karni, 2012])

É Knightian uncertainty – shortage of quantifiable knowledge about
market aspects (model parameters); Imprecise tastes – deep-rooted in
preferences, quantifiable by specified multi-utility

É Comparison: Imprecise beliefs – a pool of probability measures;
imprecise tastes – a multi-utility function ([Nau, 2006], [Ok et al.,
2012])
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Motivation and contribution

Consumption-investment choices with preferential incompleteness

É Existing research on consumption-investment problems under
imprecise beliefs (in Markovian settings) – robust utility maximization
for “worst-case scenario” due to ambiguity aversion: [Fouque et al.,
2016], [Biagini, and Pınar, 2017], [Liang and Ma, 2020]

É New problem under imprecise tastes – multi-utility maximization due
to preferences for randomization; ample empirical evidence: [Danan
and Ziegelmeyer, 2006], [Deparis et al., 2012], [Agranov and Ortoleva,
2017], [Sautua, 2017], [Cettolin and Riedl, 2019]

É Rules: Multi-criteria comparison, set comparison; importance in
tracking down all equivalently optimal policies
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Motivation and contribution

Time-varying imprecise tastes: Challenges and novelty

É Usual time preferences: Time-varying patience (stochastic
discounting) ([Roelofsma and Read, 2000])

É Material changes in incomplete preferences: Other time-varying,
possibly stochastic preference parameters – attention degrees, risk
aversion degrees, etc.; leading to intransitive time preferences from a
mutual effect of patience and shifted tastes ([Mandler, 2005], [Ok and
Masatlioglu, 2007], [Dubra, 2009])
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Motivation and contribution
Time-varying imprecise tastes: Challenges and novelty
É A motivating example: An investor in an int’l economy faces two

goods (domestic (A) and foreign (B)). Rules of comparison: (A,B) is
preferred over another pair only if A-amount has not decreased but
B-amount can, depending on the level of substitution. MRS of B
relative to A is subject to an inexact-valued scaling factor  ∈ [0, χ]
(“consumption home bias,” [Coeurdacier and Rey, 2012]). Multi-utility:

(cA, cB) = {(cA, cB) := ̆1(cA) + ̆2(cB) :  ∈ [0, χ]},
where ̆1 and ̆2 are univariate utility functions independent of .
Investor’s problem: To maximize

E[(cA, cB)] = E[{0(cA, cB), χ(cA, cB)}]

by seeking admissible investment policies. Over time, the interval
[0, χ] may change due to various factors (optimism of foreign
technologies, exchange rate increase, etc.); actual formation of
interval comes from many possible realizations

É Methodology: Set-valued random variable, or set-valued stochastic
processes in the time flow (referring to [Zhang et al., 2009], [Li et al.,
2010], [Kisielewicz, 2012], [Kisielewicz, 2020]); duality results also
available by employing [Hamel et al., 2015]

Weixuan Xia Time-varying incomplete preferences 7 / 58



Motivation and contribution

Main contributions

É To construct a hybrid set-valued stochastic process that encompasses
arbitrary patterns of parametric changes in incomplete preferences

É To provide a formulation for multi-utility maximization involving
consumption and investment in continuous time, which gives rise to a
new multi-stochastic criteria optimization problem

É To refine scalarization techniques to account for both infiniteness and
randomness in dimensions for a complete characterization of optimal
consumption policies and propose a novel stochastic geometry-based
method to identify corresponding optimal investment policies

É To characterize the composition of optimal consumption-investment
policies and according to empirically evidenced psychological effects
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Problem formulation

Market setup

É Uncertainty structure: (Ω,F ,P;F ≡ {Ft}t∈[0,T]), with F - augmented
natural filtration of W (m-D Brownian motion); all processes
F-non-anticipating; F =FT

É Financial market: One risk-free asset with return r ≡ (rt)t∈[0,T] > 0
bounded; m risky assets with return

Zt = Z0 +
∫ t

0
μsds+

∫ t

0
σsdWs, t ∈ [0, T],

with Z0, μ ∈ Rm, σ ∈ Rm⊗m, μ integrable, σ square-integrable and
invertible.

É Commodity market: n ≥ 2 distinct goods – flexible characterization,
e.g., tangible vs intangible, convenience vs shopping vs specialty
([Bucklin, 1963])
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Problem formulation

Construction of time-varying incomplete preferences

Definition
Let I be a nonempty closed convex subset of the Euclidean space Rd with
d ∈ N++ and define a set of utility elements { :  ∈ I}. Suppose that c � c′
if and only if the utility elements (c) ≥ (c′) for every  ∈ I; then I is
referred to as a (multi-utility representation) index set for the preference
relation �.

É I for easy labeling of utility elements by d different parameters;
crdI ≤ c

É R :=
∏d

k=1 Rk - global product space of d parameters, k ∈ Rk; I ∈ Cl(R)
É In the time flow, I ≡ (It)t∈[0,T] is a (set-valued) stochastic process.
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Problem formulation

Construction of time-varying incomplete preferences

É External preferential changes: Driven by market characteristic
(non-monotone), e.g., time-varying risk aversion ([Guiso et al., 2018]);
driven by psychological effects under sophistication (known
monotonicity), e.g., stochastic patience ([Read and Roelofsma, 2003])
or time-varying attention with socialization (status consumption,
perceived valuation, tech. development) ([Janssen and Jager, 2001],
[Mrad et al., 2020], [Çanakoğlu and Özekici, 2012], [Wu et al., 2018])

É Corresponding components: A non-monotone component plus two
monotone (decreasing vs increasing) components – generally
constructed from set-valued Itô processes

É Aggregate effects: Minkowski summation – (1) nice mathematical
properties (including convexity preservation); (2) isolability of different
channels of indecisiveness changes (element-wise vector addition in
sets)

É Non-redundancy: Restricting I to valid parameter spaces
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Problem formulation
Construction of time-varying incomplete preferences

É Multi-utility index dynamics: For (t,ω) ∈ [0, T]×Ω,

It(ω) :=R ∩ clRd
�

1,t(ω) +
⋂

s∈[0,t∧τ(ω)]
2,s(ω) + coRd

⋃

s∈[0,t]
3,s(ω)

�

;

τ(ω) := sp

¨

t ∈ [0, T] : crd
⋂

s∈[0,t] 2,s(ω) > 0

«

; for each

q ∈ {1,2,3},

q,t = clL1
�

q,0 +
∫ t

0
ƒq,sds+

∫ t

0
coL2Gq,sdWs

�

, t ∈ [0, T]

as the sum of an Aumann stochastic integral and a set-valued Itô
integral

É Further details: q,0 - F0-measurable nonempty closed convex subset
of Rd; ƒq : [0, T]×Ω 7→ Cl(Rd) - closed convex set-valued stochastic
process; Gq := {(gq,k : [0, T]×Ω 7→ Rd×m) : k ∈ N++} - collection of
continuous (d×m)-dimensional processes, satisfying some suitable
integrability conditions
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Problem formulation

Construction of time-varying incomplete preferences

É Interpretations: q,0 - initial space of imprecise tastes;
∫ ι
0 ƒq,sds -

long-term momenta;
∫ ι
0 coL2Gq,sdWs - short-term noises

É Generality: Time-varying indecisiveness span by multi-valued ƒq’s and
Gq’s; reduced to time-invariance (as in [Hamel and Wang, 2017] and
[Rudloff and Ulus, 2020]) if ƒq = {0} and Gq = {0}

É Limitations: No endogenous preferential changes (mere-exposure
effect, [Bornstein, 1989]) – addressed in a second paper

Proposition
The set-valued process I is F-non-anticipating, integrably bounded, and
continuous P-a.s.
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Problem formulation

Construction of time-varying incomplete preferences

É Multi-utility representation:

(t, c) ≡ (t, c|It) =
¨

{(t, c) :  ∈ It}, if c ∈ Rn++,
−∞, o.w.,

t ∈ [0, T];

’s are B([0, T]× Rn++)-measurable real-valued utility elements that

are càdlàg in time; the index map Rd 3  7→  ∈ R is also
B(Rd)-measurable, continuous, and bounded at infinity.

É Dimensionality reduction: If ∃J ( I finite with fixed cardinality crdJ,
F-non-anticipating such that (t, c|It) = coCb(t, c|Jt), P-a.s. in the
space Cb(Rd;R) of continuous functions bounded at infinity, then
replace I by J.

É Bequest function: A univariate standard utility function U
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Problem formulation

Construction of time-varying incomplete preferences

É Ordering cones: Kt ⊆
⋃

s∈[0,t]
∏

∈Is im((s, ·) + U) 3 0, t ∈ [0, T],
taking values in Cl(Cb(Rd;R)), convex, assumably pointed; interpreted
as a region of comparability where utility differences over
consumption-bequest quantities can be ranked; upon dim. reduction,
Kt ⊆

∏crdJt
=1 im((t, ·) + U).

É K can be designed to be F-non-anticipating – knowing the ability to
rank bundles contemporaneously
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Problem formulation

Construction of time-varying incomplete preferences

Assumption
(i) (Monotonicity): For any c, c′ ∈ Rn+ with c− c′ ∈ Rn+ and any  ≥ ′ ≥ 0,

(t, c)− (t, c′) ∈ Kt and U()− U(′) ≥ 0.

(ii) (Concavity): For any α ∈ [0,1], c, c′ ∈ Rn+, and , ′ ≥ 0,

(t, αc+ (1− α)c′) ∈ α(t, c) + (1− α)(t, c′) + Cb(It ;R+)

and
U(α+ (1− α)′) ≥ αU() + (1− α)U(′).

(iii) (Non-redundancy):  ≡ 0 for every  ∈Rû.

É Indecisiveness can be thought of as being fixed in the universe URd of
all possible types of tastes while process I controls which types are in
force (effectively) over time.
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Problem formulation
Construction of time-varying incomplete preferences

Proposition
For any fixed t ∈ [0, T] and a given multi-utility function  ∈ UIt , define the
(t, ·)-induced preference relation on Rn+ as the set

�t := {(c, c′) ∈ Rn+ × R
n
+ : (t, c)− (t, c

′) ∈ Kt}.

Then �t is reflexive and transitive but not necessarily complete.

É Key properties: � statically incomplete, dynamically (possibly)
intransitive (“max-min” multi-utility, [Nishimura and Ok, 2016])

É Bequest preference simply governed by ≥ (complete).

Definition
For any fixed t ∈ [0, T], given a multi-utility function (t, ·) ∈ UIt , the
incomplete part of the induced preference relation �t is defined as

ÿt := {(c, c′) ∈ Rn+ × R
n
+ : (t, c)− (t, c

′) ∈ ±Kt}û.
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Problem formulation

Multi-utility maximization problem

É Investor’s wealth: For t ∈ [0, T],

Xt ≡ X
(c,)
t = X0 +

∫ t

0
(rsXs − Cs)ds+

∫ t

0
〈s, (μs − rs1)ds+ σsdWs〉m;

c - n-D consumption process, C := 〈c,1〉n its total,  - m-D portfolio
process in dollar amounts, X0 > 0 - given initial wealth

Assumption

(i) ct ∈ Rn+, ∀t ∈ [0, T], and
∫ T
0 Csds <∞, P-a.s.

(ii)
∫ T
0 ‖

ᵀ
sσs‖22ds <∞ and

∫ T
0 |〈s, μs − rs1〉m|ds <∞, P-a.s.

É Notation: c ∈ Cn and  ∈ Pm
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Problem formulation
Multi-utility maximization problem

É Investor’s problem:

sp
(c,)∈A(X0)

V(c,), V(c,) := E
�
∫ T

0
(t, ct)dt + U(XT )

�

within admissibility set (given X0 > 0)
A(X0) := {(c,) ∈ Cn ×Pm : Xt ≥ 0, t ∈ [0, T], P-a.s.}
Meaning: V valued in Cb(Ī;R), with Ī F0-measurable such that
dH
�

clRd
⋃

t∈[0,T] It ,{0}
�

≤ dH(Ī,{0}), P-a.s. (as a domain extension);
integral in the sense of Bochner (not Aumann); maximality w.r.t. some
chosen F0-measurable pointed closed convex cone
K̄ ⊇ coCb

⋃

t∈[0,T]Kt (P-a.s.) over Ī; Kt = K̄ ∀t if dimensionality is
reduced to crdJ

Definition
Say that (c,) ∈ A(X0) is a K̄-maximal solution of the above problem if
(V(c,) + K̄) ∩ V(A(X0)) = {V(c,)}. On the other hand, it is said to be
weakly K̄-maximal if intK̄ 6= ∅ and (V(c,) + intK̄) ∩ V(A(X0)) = ∅.
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Problem formulation
Multi-utility maximization problem

É State price density (market completeness):

ξt := exp
�

−
∫ t

0

�

rs +
1

2
‖θs‖22

�

ds−
∫ t

0
〈θs,dWs〉m

�

, t ∈ [0, T]

É Static problem:
sp

(c,XT )∈B(X0)
V(c, XT ),

within (budget set)

B(X0) :=
�

(c, XT ) ∈ Cn × L1F (Ω;R+) : E
�
∫ T

0
ξsCsds+ ξTXT

�

≤ X0
�

Theorem
(i) If (c,) ∈ A(X0), then (c, XT ) ∈B(X0).

(ii) If (c, XT ) ∈B(X0), then there exists  ∈ Pm such that (c,) ∈ A(X0).
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Solution by way of scalarization
A modified Gass-Satty method
É Nature: A method to project all objective functions into R, a.k.a.

weighted-sum method ([Gass and Satty, 1955]), modified to
accommodate infinite stochastic dimensions

É Single-criterion problem:

sp
(c,XT )∈B(X0)

V(c, XT |),  ∈ K†, sp
t∈[0,T]

‖(t)‖1 > 0;

 being a weight functional, with ‖ ‖1 the TV norm (reducible to the
Taxicab norm) on finite Radon measures, and

V(c, XT |) := E
�
∫ T

0

�

(t), (t, ct) +
U(XT )

T

�

It
dt
�

,

real-valued; K†
t :=

�

z ∈ (Cb(It ;R))† : 〈z, k〉It ≥ 0, ∀k ∈ Kt
	

- (topological)
dual cone of Kt, ∀t ∈ [0, T]

É Remark: K† is an F-non-anticipating closed convex-valued process.

É Interpretation:  - floating totaling rule applied inter-temporally to the
multi-utility  augmented by the time-scaled bequest utility U/T;
indefiniteness of  for imprecision of tastes
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Solution by way of scalarization
A modified Gass-Satty method

Theorem
(i) If (c∗, X∗T ) is a K̄-maximal solution of the multi-criteria problem, then

there exists (t) ∈ K†
t for every t ∈ [0, T] with spt∈[0,T] ‖(t)‖1 > 0 such

that (c∗, X∗T |) is a maximal solution of the single-criterion problem.

(ii) If (c∗, X∗T |) is a maximal solution of the single-criterion problem then
(c∗, X∗T |) is at least a weakly K̄-maximal solution of the multi-criteria
problem.

Proposition
Let (c∗, X∗T |) be a maximal solution of the single-criterion problem
conditional on  ∈ K†; then the set of K̄-maximal solutions of the
multi-criteria problem is precisely equal to

S∗ =
n

(c∗, X∗T |) : ∈ K†, sp
t∈[0,T]

‖(t)‖1 = 1
o

.
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Solution by way of scalarization

A modified Gass-Satty method

É Remarks: intK 6= ∅ ensures necessity; a convex criterion space
V(B(X0)) ensures sufficiency; S∗ gives rise to a
B([0, T])⊗F-measurable -parameterized augmented set-valued
process (c∗, X∗T ) valued in Cl

�

Cn × L1F (Ω;R+)
�

; K† ≡ K̄† becomes (fixed)
finite-dimensional with dimensionality reduction.

É Implication: The modified Gass-Satty method is capable of recovering
all the optimal consumption-bequest policies.
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Solution by way of scalarization

Solution procedures

Assumption
For every t ∈ [0, T] and  ∈ It, (t, ·) ∈ C∞(Rn++;R), which satisfies the Inada
conditions that the first-order derivatives with respect to the jth
consumption quantity, cj, limcj↘0 

(j)
 (t, c) =∞ and limcj→∞ (j) (t, c) = 0, for

any j ∈ N ∩ [1, n]; similarly, U ∈ C∞(R++;R), satisfying that lim↘0 U() =∞
and lim→∞ U() = 0.

É Step 1: Construct the index set process I ⊆ Rd according to
established recipes (by specifying q,0, ƒq, and Gq) and compute its
unconditional superset Ī.

É Step 2: Specify utility elements ’s according to interests, set up
multi-utility , and check if dimensionality reduction holds (if so
change I to J and consider Ī as N ∩ [1, crdJ]); specify ordering cones
K and K̄ accordingly.
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Solution by way of scalarization

Solution procedures

É Step 3: Specify the following optimality conditions (sufficient and
necessary)

ηξ = 〈,(j)(ι, c)〉I , j ∈ N ∩ [1, n],

ηξT =
U′(XT )

T

∫ T

0
〈(t),1〉Itdt,

X0 = E
�
∫ T

0
ξtCtdt + ξTXT

�

;

(j) - multifunction of jth derivatives; attainability ensured by Inada
conditions

É Comments: (n+ 2)-dimensional nonlinear systems for (c, XT ) and η
given ; feedback forms: c = ψI(ηξ|),
XT = (U′)−1

�

ηξTT
�

∫ T
0 〈(t),1〉Itdt

�

; occasionally a single solution

É Step 4: Take union over K̄† 3 (s.t. normalization) to get to the full set
of solutions.
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Solution by way of scalarization

Example 1: Invariant indecisiveness

É Setting: m = 1, n = 2, d = 1; constant market coefficients (r, μ, σ);
2,0 = 3,0 = {0}, ƒq ≡ {0} and Gq ≡ {0}, ∀q ∈ {1,2,3} – constant
Ī = I = 1,0; no bequest utility U ≡ 0

É Multi-utility: Totally incomparable goods, independent assessment;

(ι, c) ≡ (c) =







c1−p − 1
1− p

, if  ∈ {1,2},

0, o.w.,

(I)

with p ∈ R++ \ {1} constant risk aversion degree

É One good more essential than the other, imprecise attention;

(ι, c) ≡ (c) =







(c1−p1 − 1) + (c1−p2 − 1)
1− p

, if  ∈ [0, χ],

0, o.w.,

(II)

with χ > 0 upper bound of attention degree 
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Solution by way of scalarization

Example 1: Invariant indecisiveness

É Adequate substitutes, imprecise interaction;

(ι, c) ≡ (c) =







c1−p1 + c1−p2

1− p
−
(c1c2)1−p

(1− p)2
, if  ∈ [ϰ1, ϰ2] ( R++,

0, o.w.;
(III)

ϰ1, ϰ2 the lower/upper bounds for interaction degrees.

Case (I) Case (II) Case (III)
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Solution by way of scalarization
Example 1: Invariant indecisiveness
É Solutions: Case (I). With ρp(r, θ) := (1/p− 1)r + (1− p)/(2p2)θ2,

S∗ =
�

c ∈ C2 : C∗ =
ρp(r, θ)X0

ξ1/p(eρp(r,θ)T − 1)

�

- focus on total consumption, randomization over combinations
É Case (II).

S∗ =
�

c∗ ∈ C2 : C∗ =
ρp(r, θ)X0

ξ1/p(eρp(r,θ)T − 1)
;
c∗1
c∗2
∈ [0, χ1/p]

�

- focus on total consumption, limited consumption of the first good
É Case (III). ψ(ηξ|)  1− 1−p(1ϰ1 +2ϰ2)/(1− p) = ηξp,  ≥ 0;

S∗ =
⋃

∈R2+, ‖‖1=1

�

c∗ ∈ C2 : c∗1 = c
∗
2 = ψ(ηξ|);

η  2
∫ T

0
E[ξtψ(ηξt |)]dt = X0

�

- inexact total consumption, equal weights of two goods
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Solution by way of scalarization
Example 2: Socialization and increasing indecisiveness
É Setting: Same as Case (II) of Ex. 1 except 1,0 = 2,0 = {0},

3,0 = [0,1], ƒq ≡ {0}, ∀q ∈ {1,2,3}, G1 ≡ G2 ≡ {0}, G3 ≡ {λ}, λ > 0

constant, so It =
�

0, λW↑t + 1
�

, t ∈ [0, T], with W↑ := sps∈[0,ι]Ws the
running maximum of W; Ī = R+

É Multi-utility: Increasing attention degrees due to socialization;

(t, c) =







χ(c
1−p
1 − 1) + (c1−p2 − 1)

eβt(1− p)
, if  ∈

�

0, λW↑t + 1
�

,

0, o.w.;

χ : R+ 7→ R+ attention degree function (bounded, nondecreasing); λ -
attention increase acceleration
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Solution by way of scalarization

Example 2: Socialization and increasing indecisiveness

É Solution:

S∗ =
⋃

∈R2+, ‖‖1=1

¨

c∗ ∈ C2 : C∗ =
(1χ0 +2χλW↑+1)1/p + 1

(ηξeβι)1/p
;

c∗1
c∗2
∈
�

χ1/p0 , χ1/pλW↑+1
�

;

η1/p =
1

X0

∫ T

0

∫∫

R+×(∞,1]

È

2

πt3
(21 − 2)exp

��1

p
− 1
��

r +
θ2

2

�

t

+ θ2 −
βt

p
−
(21 − 2)2

2t

�

�

(1χ0 +2χλ1+1)
1/p + 1

�

d(1, 2)dt

«

- inexact total consumption, stochastic limit of first good’s
consumption
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Solution by way of scalarization

Example 3: Socialization, market volatility, and changing
indecisiveness

É Setting: Similar to Ex. 2 except stochastic market volatility
(exponential OU)

σt = exp
�

(logσ0)e−κt + ς
∫ t

0
e−κ(t−s)dWs

�

, t ∈ [0, T],

with parameters σ0 > 0, κ > 0, and ς > 0; R = R+ × [1,∞),
1,0 = {(0, σ0)}, 2,0 = {0}, 3,0 = [0,1]× [1,2],
ƒ1 = {(0, κ(ς2/(2κ)− logσ)σ)}, ƒ2 = ƒ3 = {0}, G1 = {(0, ςσ)},
G2 ≡ {0}, G3 = {(λ,0)}, so
It = [0, λW

↑
t + 1]× [σt + 1, σt + 2], t ∈ [0, T], Ī = R+ × [1,∞); bequest

utility U() = e−βT (1−p◦ − 1)/(1− p◦),  > 0, p◦ ∈ R++ \ {1} given
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Solution by way of scalarization

Example 3: Socialization, market volatility, and changing
indecisiveness

É Multi-utility: Increasing attention plus volatility-driven risk aversion;

(t, c) =







χ1 (c
1−p2
1 − 1) + (c

1−p2
2 − 1)

eβt(1− p2 )
, if  ∈ It ,

0, o.w.;

p : [1,∞) 7→ R++ \ {1} - some bounded nondecreasing function
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Solution by way of scalarization
Example 3: Socialization, market volatility, and changing
indecisiveness

É Solution: R+ 3  7→ ϑp,2;σ() :=
∫ σ+2
σ+1 2,2

−p2d2 ∈ [0,∞],

S∗ =
⋃

̄∈(Cb(R+×[1,∞);R+))†,
‖̄‖1=1

¨

(c∗, X∗T ) : c
∗
1 = ϑ

−1
p,̄2;σ

� ηξeβι

∫ λW↑+1
0 ̄1,1χ1d1

�

;

c∗2 = ϑ
−1
p,̄2;σ

� ηξeβι

∫ λW↑+1
0 ̄1,1d1

�

; X∗T =
�

∫ T
0

∫

[0,λW↑t+1]×[σt+1,σt+2]
̄ddt

ηξTTeβT

�1/p◦
;

η 
∫ T

0
E

�

ξt

�

ϑ−1p,̄2;σt

� ηξteβt

∫ λW↑t+1
0 ̄1,1χ1d1

�

+ ϑ−1p,̄2;σt

� ηξteβt

∫ λW↑t+2
1 ̄1,1d1

���

dt

+ E

�

ξ1−1/p◦T

�

∫ T
0

∫

[0,λW↑t+1]×[σt+1,σt+2]
̄ddt

ηTeβT

�1/p◦
�

= X0

«

- same as in Ex. 2, plus “effectively” shrunk indecisiveness due to
increased risk aversion
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Optimal investment

Portfolio structure

É Idea: To compute ∗ given each F-non-anticipating selector of C∗ as a
set-valued process; C∗ single-valued occasionally

É Optimal wealth:

X∗t = ξ
−1
t E

�
∫ T

t
ξsC∗s ds+ ξTX

∗
T

�

�

�

�

Ft

�

, t ∈ [0, T]

for every (C∗, X∗T ) optimal

É Feedback expressions:

C∗ = ΨI(ηξ|) := 〈ψI(ηξ|),1〉n, X∗T = (U
′)−1

� ηξTT
∫ T
0 〈(t),1〉Itdt

�
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Optimal investment
Portfolio structure

Theorem
The optimal investment policy is given by the set-valued process

∗t = clL1
�

ξ−1t E

�
∫ T

t
ξsγIs (ηξs|(s))ds+ ξT(ηξT |)

�

�

�

�

Ft

�

(σᵀt )
−1θt

− ξ−1t (σ
ᵀ
t )
−1E

�
∫ T

t
ξs
�

(ΨIs (ηξs|(s))− γIs (ηξs|(s)))Ht,s + υ(t, s|(s))
�

ds

ξT

��

(U′)−1
� ηξTT
∫ T
0 〈(s),1〉Isds

�

− (ηξT |)
�

Ht,T + ϒ(t, T |)
�
�

�

�

�

Ft

�

:

(s) ∈ K†
s, ∀s ∈ [t, T]; sp

s∈[0,T]
‖(s)‖1 > 0

�

, t ∈ [0, T],

where

γI(ηξ|) := −ηξ1ᵀ
�

〈, ((j))(j
′)(ι, ψI(ηξ|))〉

�−1
j,j′∈N∩[1,n]1,

...
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Optimal investment
Portfolio structure

Theorem (cont’d)

(ηξT |) := −
ηξTT

∫ T
0 〈(s),1〉Isds

((U′)−1)′
� ηξTT
∫ T
0 〈(s),1〉Isds

�

,

υ(t, ι|) :=
�

�

〈, ((j))(j
′)(ι, ψI(ηξ|))〉

�−1
j,j′∈N∩[1,n]

×
�
∫

∂I
v(,W)ù

�


(j)
 (ι, ψI(ηξ|))d

�

1(0,∞)(‖‖1)
�

j∈N∩[1,n]

�ᵀ

1,

and

ϒ(t, T |) := ηξTT((U′)−1)′
� ηξTT
∫ T
0 〈(s),1〉Isds

�

∫ T
t

∫

∂Is
v(,Ws)ù((s)d)ds

�

∫ T
0 〈(s),1〉Isds

�2
;

v(,Ws) - velocity vector field of the Rd-boundary ∂Is for s ∈ (t, T] on the
classical Wiener space C0([0, T];Rm); ù - interior product
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Optimal investment
Portfolio structure

É Interpretations: γI ,  - parameterized risk tolerance functions
corresponding to consumption multi-utility resp. bequest utility; H -
determined F-non-anticipating processes for (r, θ)-hedging; υI , ϒ -
parameterized psychological effect functions for indecisiveness

É Dimensionality reduction: I replaced by J; duality pairing over crdJ;
∂J = J

É Portfolio decomposition:

∗ = clL1
n

((θ) +(H) +(ú)|) : ∈ K†, sp
t∈[0,T]

‖(t)‖1 = 1
o

for a mean-variance portfolio, a market risk-hedging portfolio, and an
indecisiveness risk-hedging portfolio, in sequence; readily reducible to
classical decomposition without time-varying incompleteness

É Threefold effects: (1) Alteration of optimal consumption policy
structures – dynamic intransitivity of preferences – new Wiener
functionals; (2) a new portfolio component (ú) for hedging motives
for imprecise taste risks; (3) multiplicity in optimal investment policies
– static incompleteness of preferences
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Optimal investment

Portfolio structure

É Simplification: If each  is consumption-additive, i.e.,

(t, c) = 〈α(t), ̆(c)〉n ≡
n
∑

j=1

αj(t)̆j(cj),  ∈ I

for suitable functions {̆j : j ∈ N ∩ [1, n]} ⊆ C∞(Rn+;R) and
time-dependent coefficients αj’s and d = 1, an easier-to-implement
formula is available (next corollary).
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Optimal investment

Portfolio structure

Corollary

∗t = clL1
¨

ξ−1t E

�
∫ T

t
ξs

n
∑

j=1

γj(ηξs|(s))ds+ ξT(ηξT |)

�

�

�

�

�

Ft

�

(σᵀt )
−1θt

− ξ−1t (σ
ᵀ
t )
−1E

�
∫ T

t
ξs

� n
∑

j=1

�

(̆′j )
−1
� ηξs

〈(s), αj(s)〉Is

�

− γj(ηξs|(s))
�

Ht,s

+ ηξs
n
∑

j=1

((̆′j )
−1)′

� ηξs

〈(s), αj(s)〉Is

�

×
Y̆+,s (s)αY̆+,s j(s)Dt Y̆+,s1R(Y̆+,s)−Y̆−,s (s)αY̆−,s j(s)Dt Y̆−,s1R(Y̆−,s)

〈(s), αj(s)〉2Is

�

ds

+ ξT
��

(U′)−1
� ηξTT
∫ T
0 〈(s),1〉Isds

�

− (ηξT |)
�

Ht,T + ηξTT · · ·
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Optimal investment

Portfolio structure

Corollary (cont’d)

× ((U′)−1)′
� ηξTT
∫ T
0 〈(s),1〉Isds

� 1
�

∫ T
0 〈(s),1〉Isds

�2

×
∫ T

t

�

Y̆+,s (s)Dt Y̆+,s1R(Y̆+,s)−Y̆−,s (s)Dt Y̆−,s1R(Y̆−,s)
�

ds
�

�

�

�

�

�

Ft

�

:

(s) ∈ K†
s, ∀s ∈ [t, T]; sp

s∈[0,T]
‖(s)‖1 > 0

«

, t ∈ [0, T],

with

γj(ηξ|) = −
ηξ

〈,αj〉I
((̆′j )

−1)′
� ηξ

〈,αj〉I

�

, j ∈ N ∩ [1, n],

{Y̆±} = ∂Ĭ, Ĭ the unrefined index set such that I =R ∩ Ĭ
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Optimal investment

Solution procedures

É Step 1: Check consumption additivity and parameter space
dimensionality unity – if so apply Corollary – directly find two endpoints
Y̆± constituting the boundary ∂Ĭ of the unrefined index set.

É Step 2: If Step 1 fails, apply Theorem; in so doing, check if
dimensionality reduction holds – if so use J as new boundary, or else
identify a representation Castaing (Mallavin differentiable) of ∂It for a
given t ∈ [0, T] (not difficult for regular d-polytopes, sufficient for
applications)

É Step 3: Vary  in the dual cone for the full set of optimal investment
policies and (optionally) take limits (in L1) as needed.
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Optimal investment

Example 1 revisited

É Case (I) and Case (II):

∗t =
�X0θ(eρp(r,θ)(T−t) − 1)

pσξ1/pt (eρp(r,θ)T − 1)

�

, t ∈ [0, T]

- single-valued mean-variance portfolio

É Case (III):

∗t = clL1
� θη

σξt

∫ T

t

E

� 2(1− p)ξ2sψ(ηξs|)
2p+1

p(1− p)ψ(ηξs|)p + (1− 2p)(1ϰ1 +2ϰ2)ψ(ηξs|)

�

�

�

�

Ft

�

ds :

η given;  ∈ R2+, ‖‖1 = 1
�

, t ∈ [0, T]

- (strict) set-valued mean-variance portfolio (simulation needed)
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Optimal investment

Examples 2 and 3 revisited

É Example 2:

∗t = clL1
¨

θ

pση1/pξt

∫ T

t
E

�ξ1−1/ps

eβs/p

�

(1χ0 +2χλW↑
s
+1)

1/p + 1
�
�

�

�

�

Fs

�

ds

+
λ2

pση1/pξt

∫ T

t
E

�ξ1−1/ps

eβs/p

� χ′λW↑
s
+1

(1χ0 +2χλW↑
s
+1)1−1/p

+ 1
�

× erfc
W↑t −Wt
p

2(s− t)

�

�

�

�

Ft

�

ds : η given;  ∈ R2+, ‖‖1 = 1
«

, t ∈ [0, T],

- (strict) set-valued portfolio with a mean-variance component and an
indecisiveness risk-hedging component (simulation optional)

É Example 3: Formula too long to show (albeit easily computable) -
(strict) set-valued portfolio with a mean-variance component, a market
risk-hedging component, and an indecisiveness risk-hedging
component (simulation needed)
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Simulation techniques
Euler-type discretization
É Finite time partition: PK = {t|K :  ∈ N ∩ [0, K]}, K ∈ N++, of generic

time interval [0, t], t ∈ (0, T]
É Approximate index set: For every  ≤ K and q ∈ {1,2,3},

̂(K)q,t|K := q,0 +
−1
∑

ι=0
(tι+1|K − tι|K )ƒq,tι|K

+ coL2

¨ −1
∑

ι=0
gq,k,tι|K (Wtι+1|K −Wtι|K ) : k ∈ N++

«

and subsequently

Î(K)t :=R ∩
�

̂(K)1,tK |K +
(K−1)∧ℓ̂
⋂

=0

̂(K)2,t+1|K
+ coRd

K−1
⋃

=0

̂(K)3,t+1|K

�

,

with (tK |K ≡ t)

ℓ̂ := inf

¨

 ∈ N ∩ [1, K] : crd
K−1
⋂

=0

̂(K)2,t+1 |K = 0

«

− 1;
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Simulation techniques

Euler-type discretization

Proposition
For any t ∈ [0, T] with corresponding partition PK ( [0, t] it holds that

lim
K→∞

E
�

dH
�

It , Î
(K)
t
��

= 0.

É Remarks: Numerical integration over I is implementable via
Gauss-Kronrod quadratures ([Ma et al., 1996]); ξ is single-valued –
standard Euler discretization schemes apply.
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Simulation techniques

Numerical experiments

É Common parameter values: r = 0.001, μ = 0.02, T = 1 (year),
X0 = $100.00; K = 200 (uniform)

Specific parameter values

Category parameter dual cone (approximation)
Ex. 1 Case (I) σ = 0.36, p = 6 R2+ (100-partition)
Ex. 1 Case (II) σ = 0.36, p = 6, χ = 3 R2+ (100-partition)
Ex. 1 Case (III) σ = 0.36, p = 6, [ϰ1 , ϰ2] = [1,2] R2+ (100-partition)

Ex. 2 σ = 0.36, p = 6, β = 0.05, λ = 0.2, χ = id∧ 5 R2+ (100-partition)

Ex. 3 σ0 = 0.36, κ = 0.1, ς = 0.8, β = 0.05, (Cb(R+ × [1,∞);R+))†
λ = 0.2, p◦ = 5, χ = p/3 = id∧ 5 (100-1-partition, 2 = δ{2.2})
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Simulation techniques

Numerical experiments
Ex. 1: Case (I), Case (II), Case (III)
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Simulation techniques
Numerical experiments
Ex. 2:
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Simulation techniques
Numerical experiments
Ex. 3:
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Conclusions

Concluding remarks

É Study: Martingale solutions to Merton’s optimal
consumption-investment problem with time-varying incomplete
preferences

É Considerations: Important external psychological factors with
abundant empirical evidence; a model of time-varying incomplete
preferences by a stochastic multi-utility index set following a
d-dimensional set-valued Itô process with two monotone components

É Methodology: A unified approach towards characterizing the pool of
optimal consumption-bequest policies by defining weight functionals in
a stochastic dual cone; the associated optimal investment policy
achieved via exploiting Malliavin calculus in a set-valued setting,
alongside techniques from stochastic geometry

É Implementation of optimal policies: (1) Pick a weight functional  from
its identified dual cone for computing consumption(-bequest) policies
following established procedures; (2) Using the same functional
compute the corresponding optimal investment policies (limiting cases
considerable, or utopian policies)
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Conclusions

Economic implications

É Time-varying incomplete preferences: Imprecise tastes and
preferences for randomization; externally fluctuating preferences –
stochastic patience, increasing/decreasing attention, time-varying risk
aversion, etc.

É Multi-utility maximization: To seek all equivalently optimal (admissible)
consumption policies, with a floating rule for inflicting conflicts; flexible
(switching) optimal policies over time

É Optimal investment: A new portfolio decomposition highlighting a
hedging demand for indecisiveness risks (esp. for material preference
changes); flexible policies matched to consumption policies

É Equilibrium outlook: Capacity to unravel the dynamic variability of
asset prices (puzzles); fuzzy equilibria
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Conclusions
Further research

É Coalescence of imprecise tastes into beliefs ([Nau, 2006]): A partially
robust multi-utility maximization problem, e.g., as in Motivating Ex.,
with objective function

inf
P∈¶

EP
�

(cA, cB)−Cb([0, χ];R+)
�

=
⋂

P∈¶

�

EP[{0(cA, cB), χ(cA, cB)}]−R2+
�

;

infimum taken over a convex space ¶ of equivalent probability
measures each admitting a bijective correspondence with a duplet
�

μP, σP
�

characterizing the market; to be understood in a set-valued
sense ([Hamel et al., 2015])

É Habitual indecisiveness: Mere-exposure effect; habit formation;
internally driven incomplete preferences; endogenous multi-utility
index set; nonlinear scalarization methods; set-valued BSDE (an
ongoing study)

É More versatile market characteristics: Jumps ([Michelbrink and Le,
2012]), memory effects – fractionally integrated Lévy-Itô processes in
a set-valued setting (model construction already studied)

É General incomplete-market equilibrium framework (in preparation)
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Q&A

Thank you!
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